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Preceding Page Blank 

PREFACE 

This volume constitutes the Proceedings of the IUTAM Symposium on 
'Nonlinear Analysis of Fracture', held in Cambridge from 3rd to 7th Septem- 
ber 1995. Its objective was to assess and place on record the current state of 
understanding of this important class of phenomena, from the standpoints 
of mathematics, materials science, physics and engineering. All fracture 
phenomena are nonlinear; the reason for inclusion of this qualification in 
the title was to reflect the intention that emphasis should be placed on 
distinctive aspects of nonlinearity, not only with regard to material consti- 
tutive behaviour but also with regard to insights gained, particularly from 
the mathematics and physics communities, during the recent dramatic ad- 
vances in understanding of nonlinear systems in general. The expertise 
represented in the Symposium was accordingly very wide, and many of the 
world's greatest authorities in their respective fields participated. 

The Symposium remained focussed on issues of practical significance 
for fracture phenomena, with concentration on aspects that are still im- 
perfectly understood. The most significant unifying issue in this regard is 
that of scale: this theme was addressed from several perspectives. One 
important aspect is the problem of passing information on one scale up or 
down, as an input for analysis at another scale. Although this is not always 
the case, it may be that the microscopic process of fracture is understood 
in some particular class of materials. The problem then becomes one of 
constructing an appropriate model at the macroscopic scale, that retains 
the essential features of the microscopic process but avoids unmanageable 
complexity. Dually, considering the problem from the macroscopic end, it 
is important to assess which particular aspects of the macroscopic stress 
field interact directly with the fracture process. In the simplest cases, the 
process is driven by the crack tip singularity in the macroscopic field; then, 
at least some problems relating to scale disappear. The focus of interest of 
course is in the regime where this 'singularity dominance' is not realised. 
'Fracture process zones', and their extent, vary with the material under 
consideration: the underlying scales are self-evidently different for compos- 
ite materials than for metals, for example, most immediately because of 
their very different microstructural features and length scales. Particularly 
for brittle materials, local statistical variations can be a major source of 
sensitivity to scale and variability of performance. 

Dynamical problems present a major challenge: crack stability is still 
not completely resolved, even for materials for which elastic stress analysis 

ix 



is appropriate. The phenomena are of interest both on laboratory and 
terrestrial scales; indeed, much of the recent progress has been achieved by 
those whose primary concern is with geophysics. 

All of the aspects mentioned above require sound physical modelling 
coupled with analysis. In some cases the analysis may be of the classical 
kind, while for others the natural approach is numerical simulation. In 
all cases, it is important to recognise any simple unifying features, such 
as may follow from recognition of similarity or scaling. These Proceedings 
address all of these different strands, and provide a reasonable reflection of 
understanding as it exists at present. 

The Symposium consisted of forty-three lectures, all of which were in- 
vited and accorded equal weight in the programme. In addition, two poster 
sessions allowed a further twenty-three presentations. Only the content of 
the lectures is reflected in this volume, except that a full record of the pro- 
gramme features as an Appendix. A few of the lectures are not represented, 
mainly because of prior commitments to publish elsewhere. 

The International Scientific Committee responsible for the Symposium 

comprised the following: 
Prof. J.R. Willis (UK) - Chairman 
Prof. M.F. Ashby (UK) Prof. D. Gross (Germany) 
Prof. G.I. Barenblatt (UK/Russia)    Prof. J.W. Hancock (UK) 
Prof. P. Duxbury (USA) Prof. R. Madariaga (France) 
Prof. L.B. Freund (USA) Prof. V. Tvergaard (Denmark) 

The Committee gratefully acknowledges financial support for the Sympo- 
sium from the International Union of Theoretical and Applied Mechanics, 
the United States Office of Naval Research, AEA Technology, the Royal 
Society, and the International Science Foundation. 

The smooth running of the Symposium owes much to the unstinting ef- 
forts of Tom Gosling, Anne-Marie Harte, John Huber and Alex Korsunsky, 
and it would not have happened at all without a great deal of work before, 
during and after, by Lin Hardiman, to whom particular thanks are due. 



SCALING IN NONLINEAR FRACTURE MECHANICS 

Z. P. BAZANT 
Departments of Civil Engrg. and Materials Science 
Northwestern University, Evanston, IL 60208 USA 

Abstract. The paper1 presents a review of recent results on the problem 
of size effect (or the scaling problem) in nonlinear fracture mechanics of 
quasibrittle materials and on the validity of recent claims that the observed 
size effect may be caused by the fractal nature of crack surfaces. The prob- 
lem of scaling is approached through dimensional analysis and asymptotic 
matching. Large-size and small-size asymptotic expansions of the size effect 
on the nominal strength of structures are presented, considering not only 
specimens with large notches (or traction-free cracks) but also structures 
with no notches. Simple size effect formulas matching the required asymp- 
totic properties are given. Regarding the fractal nature of crack surfaces, 
it is concluded that it cannot be the cause of the observed size effect. 

1.     Introduction 

Scaling is a salient aspect of all physical theories. Nevertheless, little atten- 
tion has been paid to the problem of scaling or size effect in solid mechan- 
ics. Up to the middle 1980's, observations of the size effect on the nominal 
strength of a structure have generally been explained by Weibull-type the- 
ory of random strength. However, recent in-depth analysis (Bazant and Xi, 
1991) has shown that this Weibull-type theory does not capture the essen- 
tial cause of size effect for quasibrittle materials such as rocks, toughened 
ceramics, concretes, mortars, brittle fiber composites, ice (especially sea 
ice), wood particle board and paper, in which the fracture process zone is 
not small compared to structural dimensions and large stable crack growth 
occurs prior to failure. The dominant source of size effect in these mate- 
rials is not statistical but consists in the release of stored energy from the 
structure engendered by a large fracture. 

By approximate analysis of energy release from the structure, a simple 

Supported partly by NSF grant MSS-911447-6 to Northwestern University and partly 
by ACBM Center at Northwestern University. 

1 

J. R. Willis (ed.), IUTAM Symposium on Nonlinear Analysis of Fracture, 1-12. 
© 1997 Kluwer Academic Publishers. Printed in the Netherlands. 
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size effect law (Bazant 1983, 1984) has been derived for quasibrittle frac- 
ture. This law subsequently received extensive justifications, based on: (1) 
comparisons with tests of notched fracture specimens of concretes, mortars, 
rocks, ceramics, fiber composites (Bazant and Pfeiffer, 1987; Bazant and 
Kazemi, 1991, 1992; Bazant, Gettu and Kazemi, 1990; Gettu, Bazant and 
Karr, 1991, Bazant, Ozbolt and Eligehausen, 1994; Bazant, Daniel and Li, 
1995) as well as unnotched reinforced concrete structures, (2) similitude 
in energy release and dimensional analysis, (3) comparison with discrete 
element (random particle) numerical modeling of fracture (e.g. Jiräsek and 
Bazant, 1995), (4) derivation as a deterministic limit of a nonlocal gener- 
alization of Weibull statistical theory of strength (Bazant and Xi, 1991), 
and (5) comparison with finite element solutions based on nonlocal model 
of damage (Bazant, Ozbolt and Eligehausen, 1994). The simple size effect 
law has been shown useful for evaluation of material fracture characteristics 
from tests. Important contributions to the study of size effects in quasib- 
rittle fracture have also been made by Carpinteri (1986), Planas and Elices 
(1988a,b, 1989, 1993), van Mier (1986), and others. 

Recently, the fractal nature of crack surfaces in quasibrittle materi- 
als (Mandelbrot et al. 1984; Mecholsky and Mackin, 1988; Mosolov and 
Borodich, 1992; Borodich, 1992; Xie, 1993; etc.) has been studied inten- 
sively. It has been proposed that the crack surface fractality might be an 
alternative source of the observed size effect (Carpinteri 1994; Carpinteri 
et al. 1993, 1995; Lange et al., 1993, and Saouma et al., 1990, 1994). 

This paper outlines a generalized asymptotic theory of scaling of qua- 
sibrittle fracture and also explores the possible role of the crack surface 
fractality in the size effect. 

2.    Large-Size Asymptotic Expansion of Size Effect 

For the sake of brevity, the analysis will be made in general for fractal 
cracks and the nonfractal case will then simply be obtained as a limit case. 
Consider a crack representing a fractal curve (Fig. la) whose length is 
defined as as = S0{a/S0)

df where df = fractal dimension of the crack curve 
(> 1) and 80 = lower limit of fractality implied by material microstructure, 
which may be regarded as the length of a ruler by which the crack length is 
measured (Mandelbrot et al., 1984). Unlike the case of classical, nonfractal 
fracture mechanics, the energy W/ dissipated per unit length of a fractal 
crack cannot be a material constant because the length of a fractal curve 
is infinite. Rather, it must be defined as 

Wf/b = Gfla
df (1) 
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Figure 1: (a) Von Koch curves as examples of fractal crack at progressive 
refinement, (b) Size effect curves obtained for geometrically similar specimens 
with nonfractal and fractal cracks and finite size of fracture process zone (pos- 
sible transition to horizontal line for nonfractal behavior is shown for D < D{) 

where b = thickness of the structure (considered to be two-dimensional), 
and Gfi = fractal fracture energy, of dimension Jm~df~1. A nonfractal 
crack is the special case for df = 1, and then Gfi = Gf, representing the 
standard fracture energy, of dimension Jm~2). 

The rate of macroscopic energy dissipation Qcr with respect to the 
'smooth' (projected, Euclidean) crack length a is: 

b-&T-Gfldfa (2) 

(e.g., Borodich, 1992; Mosolov and Borodich, 1992). To characterize the 
size effect in geometrically similar structures of different sizes D, we in- 
troduce the usual nominal stress ON — P/bD where D = characteristic 
size (dimension) of the structure, and P = applied load. If P = Pmax — 
maximum load, CTJV is called the nominal strength. 

The problem will be analyzed under the following three hypotheses: (1) 
Within a certain range of sufficiently small scales, the failure is caused by 
propagation of a single fractal crack. (2) The fractal fracture energy, Gfi is 
a material constant correctly defining energy dissipation. (3) The material 
may (but need not) exhibit a material length, cy. 

The material length, c/, may be regarded as the size (smooth, or pro- 
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jected) of the fractal fracture process zone in an infinitely large specimen (in 
which the structure geometry effects on the process zone disappear). The 
special case cj = 0 represents the fractal generalization of linear elastic frac- 
ture mechanics (LEFM). Alternatively, if we imagine the fracture process 
zone to be described by smeared cracking or continuum damage mechanics, 
we may define cf = (<3/i/Wd)

1/(2_d/) in which Wd = energy dissipated per 
unit volume of the continuum representing in a smeared way the fracture 
process zone (area under the complete stress-strain curve with strain soft- 
ening). As still another alternative, in view of nonlinear fracture mechanics 
such as the cohesive crack model, we may define c/ = (EGfi/ft)1'^" f> in 
which E - Young's modulus and ft - material tensile strength. 

We have two basic variables, a and c/, both of the dimension of length. 
Let us now introduce two dimensionless variables: a = a/D and 9 = Cf/D. 
In view of Buckingham's theorem of dimensional analysis, the complemen- 
tary energy II* of the structure with a fractal crack may be expressed in 
the form: 

n* = ?£bD2f(*,e) (3) 

in which / is a dimensionless continuous function characterizing structure 

geometry. 
The energy balance during crack propagation (first law of thermodynam- 

ics) must be satisfied by nonfractal as well as fractal cracks. The energy 
release from the structure as a whole is a global characteristic of the state of 
the structure and must be calculated on the basis of the smooth (projected, 
Euclidean) crack length a rather than the fractal curve length as, i.e. 

^L = ^l. (4) 
da        da 

Substituting (3) and differentiating, we obtain an equation (see Bazant, 
1995a,b) containing the derivative g{a,0) = df{a,9)da, which represents 
the dimensionless energy release rate. The derivative of (3) must be calcu- 
lated at constant load (or constant aN) because, as known from fracture 
mechanics, the energy release rate of a crack is the derivative of the com- 
plementary energy at constant load, i.e. DON I da = 0. In this manner 
(Bazant, 1995a,b) one obtains the equation aN = y/EQcr/Pg{a0,9) where 
a0 - relative crack length a at maximum load. Because g{a0,0) ought to 
be a smooth function, we may expand it in a Taylor series about the point 
(a, 6) = (a0,0). This leads to the result (Bazant, 1995a,b,c): 
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+ 
-1/2 

(5) 

in which <?i(ao,0) = dg(ao,0)/d9, 32(00,0) = d2g(oto,9)/d02,..., all eval- 
uated at 8 = 0. This equation represents the large-size asymptotic series 
expansion of the size effect. To obtain a simplified approximation, one may 
truncate the asymptotic series after the linear term, i.e. 

1/2 
*N = BflDW(l + j?-y (6) 

in which Do and B are certain constants depending on both material and 
structure properties, expressed in terms of function g(ao,0) and its deriva- 
tive. For the nonfractal case, df —> 1, this reduces to the size effect law 
deduced by Bazant (1983, 1984, 1993), which reads aN = Bf'Jy/T+fi, ß = 
D/DQ, in which ß is called the brittleness number (Bazant and Pfeiffer, 
1987). 

If only geometrically similar fracture test specimens are considered, ao 
is constant (independent of D), and so is DQ. For brittle failures of geomet- 
rically similar quasibrittle structures without notches, it is often observed 
that the crack lengths at maximum load are approximately geometrically 
similar. For concrete structures, the geometric similarity of cracks at max- 
imum load has been experimentally demonstrated for diagonal shear of 
beams, punching of slabs, torsion, anchor pullout or bar pullout, and bar 
splice failure, and is also supported by finite element solutions (e.g. ACI, 
1992; Bazant et al. 1994) and discrete element (random particle) simula- 
tions (Jiräsek and Bazant, 1995), albeit for only a limited size range of D. 
Thus, k, co,-Do,<7jy and Bf[ are all constant. In these typical cases, (6) 
describes the dependence of &N on size D only, that is, the size effect. Fig. 
lb shows the size effect plot of loga^v versus logD at constant a$. Two 
size effect curves are seen: (1) the fractal curve and (2) the nonfractal curve 
(for the latter, the possibility of termination of fractality at the left end is 
considered in the plot). 

The curve of fractal scaling obtained in Fig. lb disagrees with the bulk 
of experimental evidence (for concrete, see e.g. the review in Bazant et al. 
1994); for carbon fiber epoxy composites used in aerospace industry, see 
(Bazant, Daniel and Li, 1995). It follows that crack fractality cannot be 
the cause of the observed size effect. 

What aspect of the fracture process causes the crack fractality to have 
no significant effect on scaling of failure? The fracture front in quasibrittle 
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materials does not consist of a single crack, but a wide band of microcracks, 
which all must form and dissipate energy before the fracture can propagate. 
Only very few of the microcracks and slip planes eventually coalesce into 
a single continuous crack, which forms the final crack surface with fractal 
characteristics. Thus, even though the final crack surface may be to a large 
extent fractal, the fractality cannot be relevant for the fracture process zone 
advance. Most of the energy is dissipated in the fracture process zone by 
microcracks (as well as plastic-frictional slips) that do not become part of 
the final crack surface and thus can have nothing to do with the fractality 
of the final crack surface. 

3.     Generalizations and Ramifications of Asymptotic Analysis 

Material length c/ can be defined as the LEFM-effective length of the frac- 
ture process zone, measured in the direction of propagation in a specimen 
of infinite size. In that case, 6 = cf/D = (a - a0)/D = a - a0, and so 
g{a,6) reduces to the LEFM function of one variable, g(a). Thus Eq. (6) 
yields (Bazant, 1995a,b,c): 

n S'M nf,       I  EGf o EGfjdfcj'-1        } 

and so Eq. (6) takes the form: 

O'N = 

d, 

(8) 
EGfidfa0

f 

\g'{a0)cf+g{a0)D 

The advantage of this equation is that its parameters are directly the ma- 
terial fracture parameters. For df == 1, Eq. (8) reduces to the form of size 
effect law derived in a different manner by Bazant and Kazemi (1990, 1991) 
(also Eq. 12.2.11 in Bazant and Cedolin, 1991). Fitting this equation to 
size effect data, which can be done easily by rearranging the equation to a 
linear regression plot, one can determine Gj or Gß and c/. This serves as 
the basis of the size effect method for measuring the material fracture pa- 
rameters, which has been adopted by RILEM as an international standard 
for concrete. 

More generally, one may introduce general dimensionless variables £ = 
ff- = (cf/D)r,h(a0,0 = [g{a0,6]r, with any r > 0. Then, expanding 
the function h{a0,£) in a Taylor series with respect to £, one obtains by 
a similar procedure as before a more general large-size asymptotic series 
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expansion (whose nonfractal special case was derived by Bazant in 1985 
(see ACI, 1992): 

aN = aP [ßr + 1 + Ki/rr + K2ß~2r + K3ß~3r + ... ] "1/2r (9) 

in which ß = D/D0 and KI,/«2,— are certain constants. However, based 
on experiments as well some limit properties, it seems that r = 1 is the 
appropriate value for most cases. 

The large-size asymptotic expansion (9) diverges for D ->■ 0. For small 
sizes, one needs a small-size asymptotic expansion. The previous energy 
release rate equation (o2

N/E)Dg(a, t?) = QCT is not meaningful for the small 
size limit because the zone of distributed cracking is relatively large. In 
that case, the material failure must be characterized by Wf rather than 
Gf. In that case, the energy balance equation (first law) for dox/da = 0 
(second law) must be written in the form a2

v[il>{a,ri)]r/E = Wf where 
i/)(a,ri) = dimensionless function of dimensionless variables a = a/D and 
T) = {D/cf)r = i9_r (variable ■& is now unsuitable because ■d -> oo for 
D -> 0), and exponent r > 0 is introduced for the sake of generality, as 
before. Because, for very small D, there is a diffuse failure zone, a must 
now be interpreted as the characteristic size of the failure zone, e.g., the 
length of cracking band. The same procedure as before now leads to the 
result (Bazant, 1995a,c): 

aN = op [l + ßT + b2ß
2r + b3ß

3r + ...] ~1/2r (10) 

in which ß = D/D0 and crp,A),&2,&3,- are certain constants depending 
on both material and structure properties and can be expressed in terms 
of function ^(«0,0) and its derivatives. Eq. (10) represents the small-size 
asymptotic series expansion. 

An important common characteristic of the large-size and small-size 
asymptotic series expansions in Eqs. (9) and (10) is that they have the 
first two terms in common. Therefore, if either series is truncated after the 
second term, it reduces to the same generalized size effect law derived by 
Bazant in 1985 (see ACI, 1992): 

aN = aP(l + ßr)-1/2r (11) 

Because this law is anchored to the asymptotic cases on both sides and 
shares with both expansions the first two terms, it may be regarded as a 
matched asymptotic (e.g. Bender and Orszag, 1978), that is, an interme- 
diate approximation of uniform applicability for any size. The value r = 1 
appears, for several reasons, most appropriate. 
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Figure 2: (a) Size effect curves obtained for unnotched specimens, nonfractal 
and fractal, (b) The surface of universal size effect law for notched as well as 
unnotched fracture specimens 

A different approach is needed for unnotched quasibrittle structures that 
reach the maximum load when the crack initiates from a smooth surface, 
as exemplified by the standardized bending test of modulus of rupture fr 

of a plain concrete beam. Applying the size effect law in Eq. (6 for the 
case ao -> 0 is impossible because g{a0,0) vanishes as ao ->■ 0. To deal 
with this case, one must truncate the large-size asymptotic series expansion 
only after the third term. Then, considering that r = 1 and g(ao,0) = 
0, restricting attention to the nonfractal case only, and using a similar 
procedure as that which led to Eq. (8), one obtains after some further 
asymptotic approximations (Bazant, 1995a,c) the following size effect law 
(Fig. 2a) for failures at crack initiation from a smooth surface: 

<?N = Bf, (-£) = /, 1-0.0634s" (0)g (12) 

(the first part of this equation was derived by Bazant and Li (1995) in a 
different manner). Here /£° is the modulus of rupture for an infinitely large 
beam (but not so large that Weibull statistical size effect would become 
significant), and B is a dimensionless parameter. This equation can be 
arranged as a linear regression plot of ON versus 1/D, which is again helpful 
for easy identification of the constants from tests. 
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Asymptotic matching of the three asymptotic expansions, namely: (1) 
the large-size expansion for large OJO, (2) the large-size expansion for van- 
ishing ao, and (3) the small-size expansion for large ao, leads (Bazant, 
1995a,c) to the following approximated universal size effect law (Fig. 2b) 
valid for failures at both large cracks and crack initiation from a smooth 
surface: 

aN = a0   1 + 
Do 

1 + "+£Ki+£) (13) 

in which OO) A),A> and cy are constants expressed in terms of g(ao) and 
its first and second derivatives and of EGf, and 77 and K are additional 
empirical constants. 

4.     Summary and Conclusion 

In quasibrittle structures, the size effect can be generally characterized 
on the basis of asymptotic series expansions and asymptotic matching. 
Whereas for normal sizes the scaling problem is extremely difficult, it be- 
comes much simpler both for very large sizes (LEFM) and for very small 
sizes (plasticity). Asymptotic matching is an effective way to obtain a sim- 
plified description of the size effect in the normal, intermediate range of 
sizes. The size effect at crack initiation from a smooth surface can also be 
described the basis of the asymptotic energy release analysis, and a uni- 
versal size effect law comprising both types of size effect can be formulated 
The fractal morphology of crack surfaces in quasibrittle materials does not 
appear to play a significant role in fracture propagation and the size effect. 

Appendix. Is Weibull-Type Size Effect Important for Quasib- 
rittle Failure? 

It is proper to explain at least briefly why strength randomness is not 
considered in the present analysis of size effect. The main reason is the re- 
distribution of stresses caused by stable fracture growth prior to maximum 
load and localization of damage into a fracture process zone. If the Weibull 
probability integral is applied to the redistributed stress field, which has 
high stress peaks near the crack tip, the dominant contribution to the inte- 
gral comes from the fracture process zone. The important point is that the 
size of this zone is nearly independent of structure size D. The contribution 
from the rest of the structure is nearly vanishing, which corresponds to the 
fact that the fracture cannot occur outside the process zone. Because, in 
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specimens of different sizes, this zone has about the same size, the Weibull- 
type size effect must, therefore, disappear. In other words, the fracture is 
probabilistic, but only the random properties of the material in a zone of 
the same size decide the failure, even though the structures have different 
sizes. 

A generalized version of Weibull-type theory, in which the material fail- 
ure probability depends not on the local stress but on the average strain 
of a characteristic volume of the material, has been shown to yield the 
approximate size effect formula (Bazant and Xi, 1991): 

VN =    ,   Bft (14) 
^ß2n/m + ß 

in which m = Weibull modulus (exponent of Weibull distribution of random 
strength), which is typically about 12 for concrete, and n = 1, 2 or 3 for 
one-, two- and three-dimensional similarity. Typically, for n = 2 or 3, 
2n/m <C 1, for concrete. Then, for m ->■ oo, which is the deterministic 
limit, this formula approaches the size effect law in (6). Also, for D -> 0, 
this formula asymptotically approaches the classical Weibull size effect law, 
and for large sizes and any m, this formula asymptotically approaches Eq. 
(6). It has been shown that the difference between these two formulas for 
concrete structures is significant only for extremely small sizes, which are 
below the applicability of continuum modeling. 
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Abstract - Quasi-brittle materials are characterised by tension softening 
behaviour after the attainment of their tensile strength. The micromechan- 
ical description of this behaviour introduces an internal length scale, called 
the characteristic length of the material. Structures made from quasi-brittle 
materials are known to exhibit a strong size effect. Several cohesive crack 
models have been proposed to explain this effect on the basis of dimensional 
considerations through the so-called brittleness number. 

In this paper an inverse procedure for a cohesive crack model is ex- 
ploited to provide explicit definitions of characteristic length and brittleness 
number from physical rather than dimensional considerations. The physical 
cause for the size effect is also identified. 

1.   Introduction 

Materials, such as concrete, rocks and some ceramics, that have tradi- 
tionally being regarded as brittle do in fact exhibit a moderately strain- 
hardening behaviour prior to the attainment of the ultimate tensile strength 
(region AB in Fig. la), and an increase in deformation with decreasing ten- 
sile carrying capacity, i.e. by tension softening (region BD in Fig. la). 

The pre-peak strain hardening behaviour of quasi-brittle materials is 
due to the formation of microcracks along the interfaces between the matrix 
and other phases and of their deflection into the matrix. This behaviour 
has been successfully explained using the concepts of damage mechanics 
(see, e.g. Karihaloo, 1995). 
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The tension softening response is due to the localization of damage in 
the form of a macroflaw along the eventual failure plane whose catastrophic 
advance is prevented by a bridging mechanism which breaks its continu- 
ity. The micromechanical description of the tension softening behaviour 
introduces an internal length scale, called the characteristic length of the 
material. 

.-   A 

Traction-free crack, a0 

' Fracture process zone, / 

(b) 

Figure 1.   Typical tensile load-deflection response of a pre-cracked quasi-brittle specimen 
(a), and the fracture process zone ahead of the real traction-free crack (b). 

Structures made from quasi-brittle materials are known to exhibit a 
strong size effect whereby small structures appear to fail in a ductile manner 
but large structures in a brittle and often catastrophic manner. Several 
cohesive crack models have been proposed to explain this ductile to brittle 
transition on the basis of dimensional considerations through the so-called 
brittleness number. We shall briefly review the various brittleness measures 
in the next Section. We shall also describe briefly an inverse procedure for 
a cohesive crack to provide explicit definitions of characteristic length and 
brittleness measures from physical rather than dimensional considerations. 

2.   Nonlinear Fracture Theories for Quasi-Brittle Materials 

The primary reason why the Griffith linear elastic fracture theory is inap- 
plicable to quasi-brittle materials is the formation of an extensive fracture 
process zone (FPZ) ahead of a pre-existing notch/crack. The material in 
this zone progressively softens due to microcracking and other bridging 
mechanisms. This is schematically illustrated in Fig. lb on the example of 
a notched specimen subjected to a tensile load. 

A fracture theory capable of describing material softening will necessar- 
ily be a nonlinear one, but because of the size of the FPZ, it will differ from 
the nonlinear fracture theory for ductile materials. In a quasi-brittle mate- 
rial the FPZ practically occupies the entire zone of nonlinear deformation 
(Fig- 2) 
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The first nonlinear theory of fracture for quasi-brittle materials was 
proposed by Hillerborg et al. (1976). It includes the tension softening FPZ 
through a 'fictitious' crack ahead of a pre-existing real crack whose faces are 
acted upon by certain closing stresses in the spirit of Barenblatt, Dugdale- 
BCS models (Fig. 3). The term 'fictitious' is used to underline the fact 
that this portion of the crack cannot be continuous with full separation of 
faces. Unlike the Barenblatt model, the size of FPZ may not be small. In 
consequence, a knowledge of the distribution of closing stresses <r(w) is now 
essential. Thus, the fracture of a quasi-brittle material requires at least two 
material parameters. In the nonlinear theory of Hillerborg et al. (1976), 
these are the shape of tension softening relation a(w) and the area under 
this curve GF (Fig. 3b), besides f'(t). 

(a) Linear elastic (b) Nonlinear plastic (c) Nonlinear quasi-brittle 

Figure 2.    Distinguishing features of fracture in (a) a linear elastic, (b) a ductile, (c) a 
quasi-brittle material. L=linear, N=nonlinear, F=FPZ (after ACI Report 446.1, 1989). 

(a) 

Figure 3.     A real traction-free crack ao terminating in a fictitious crack with residual 
stress transmission capacity <T(W) whose faces close smoothly near its tip (Ki = 0). 

Another nonlinear theory of fracture proposed by Bazant (1976) treats 
the tension softening in a "smeared" manner through a strain-softening con- 
stitutive relation. To relate the inelastic strain e to w and GF of Hillerborg 
et al. (1976), it is now necessary to introduce a gauge length over which 
the microcracks in the FPZ are assumed to be distributed (Fig. 4) 
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3.   Size Effect and Brittleness Number 

The size of FPZ is commensurate with that of a small cracked structure 
made of a quasi-brittle material so that its response will be ductile. On the 
other hand, the FPZ occupies but a small fraction of the structural volume 
in an "infinitely" large structure, so that its response will be brittle. If we 
therefore define the fracture energy, Gf and size of FPZ, c/ with respect 
to an infinitely large structure (W -» oo), then in order to determine Gf 
(akin to the modulus of cohesion in the Barenblatt cohesive model) and 
cj from laboratory specimens of moderate size, Bazant (1984) proposed 
the following scaling law based on dimensional considerations and smeared 
crack model (Fig. 4) 

(aN)u = [E'G}/{g'{a0)c})}* [l +g(a0)W/(g'(a0)cf)}^ (1) 

where (CTN)U 
1S ^e nommal stress at maximum load Pu. In (1) a0 = a0/W, 

a prime on g'{a0) denotes differentiation with respect to a0 and g(a0) is a 
function of the relative notch depth a0 only. It is related to the geometry 
function Y(a0) appearing in the stress intensity factor Kj. 

r. — 

'       I 1— 1 £» 
£e   I ,      £      . I ec 

(a) (b) 

Figure 4.    Microcracking smeared over a band of width h and the inelastic deformation. 

We note in passing that the fracture energy GF according to the fic- 
titious crack model (Fig. 3b) is much larger than Gf for a moderate size 
structure but as W ->• 00, GF -» Gj. Likewise, the characteristic length 
lch according to this model (Fig. 3a) lch = (E'GF)/fl2 approaches c/, as 
W -> 00. The brittleness of a quasi-brittle material is quantified by lch or 
c/; the smaller the value of lch or c/, the more brittle the material. 

As the strength of a structure is defined by the force per unit area, i.e. 
by energy per unit volume, while its toughness is energy per unit area, the 
brittleness of the structure includes its size from dimensional considerations 

ß = lch/W or ß = cf/W. (2) 

Another measure of brittleness can also be introduced, if E' and // in lch 
have been independently measured, namely the energy brittleness number 
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(Carpinteri, 1986) se = GF/ {f'tW). In the next Section we shall study the 
physical cause of the size effect in quasi-brittle materials. 

4.   Physical Cause for Size 'Effect 

Leicester (1969,1973) seems to have been the first to investigate the effect of 
size on the strength of structures made out of metals, timber and concrete. 
He identified two fundamental causes of size effect in real structures as 
(i) the material heterogeneity, and (ii) the occurrence of notches or other 
discontinuities to the flow of stress. The size effect due to heterogeneity 
in material strength is explained by Weibull statistics but the size effect 
caused by the occurrence of notches, etc needs some explanation. Leicester 
argued that, as the LEFM predicts the occurrence of infinite stresses at the 
apex of notch root, the failure criterion for real materials must be stated 
in terms of the elastic stresses on some region RQ encircling the notch root. 
Then provided (i) the structural member is sufficiently large so that at 
failure Ro is contained with the range of applicability of asymptotic stress 
field at notch root, and (ii) the details of the notch root are always the 
same (i.e. geometric similarity of structures), the failure stress is given by 
(aN)u = A/Ws. 

The above two assumptions are in complete accord with the two hy- 
potheses on which the size effect rule (1) is based. In fact, Ro can be 
identified with cy. For structures of moderate size, the requirement that 
Ro «W cannot be met. In consequence, it is insufficient to consider just 
the singular term in the asymptotic stress field in mode I, because now the 
terms that were unimportant due to the smallness of RQ can no longer be 
ignored. 

To understand the role played by the non-singular terms in the asymp- 
totic solution, let us consider the configuration of the Griffith problem (a 
plane containing a crack 2a) and write 

ayy\ = a0(r) « Ki (1 + r/6)/V2^r~ (3) 

where S = 4a/3. 
We shall consider the fictitious crack of Fig. 3 to investigate the effect of 

the second term in (3) on the result. We shall now investigate how a and w 
vary individually in the FPZ. If we know these variations, then elimination 
of the distance from them will give us the relation a(w). For this, we will 
decompose the problem into two sub-problems and use superposition. The 
first sub-problem is the elastic one with the FPZ. The stress intensity factor 
at the tip of the traction free crack O is equal to Kj and the stress distri- 
bution ahead of O is given by (3). In the second sub-problem, the stress 
and opening displacement are [cr(s)-a0{lp-s)] and w(s), respectively. The 
stress intensity factor k(s) at the crack tip and the opening displacement 
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g(s, t) at the location t due to unit normal forces at s are known from 
handbooks 

^riog 

k(s) = -y/2/{xs),        g{s,t) = (4/(TT£') log (yfi- y/i)/{yß+yß)\. (4) 

k(s) and g(s,t) are the usual influence or Green's functions. The corre- 
sponding Green's functions for a finite crack depend on the crack length. 

Superposition and smooth crack closure condition give 

['" g{s,t)[a(s)-a0{lp-s)]ds = w(t),   f "k(s)[a{s)-a0(lp-s)]ds = 0. (5) 
Jo Jo 

Substituting (3) and (4) into (5) and evaluating some elementary inte- 
grals, we get 

¥■ h=  a(s) ds + -p=   1 + T7F - TF    = w(0      (6) 

These integral equations have to be solved numerically for a given value 
of Kj to obtain a(s) and lp. Alternatively, lp can be prescribed, and the 
equations solved for a(s) and Kj. Of course, in both cases it is necessary 
to know the tension softening relation a(w). Horii et al. (1987) have solved 
(6) and (7) numerically for a linear approximation to cr(w). However, here 
we shall demonstrate an inverse procedure which allows us to solve these 
equations analytically. 

In this procedure, we approximate w(s), instead of a(w), in such a way 
as to solve (6) and (7) analytically for a(s) and lp (for prescribed Ki). 
We then eliminate s between the assumed w{s) and the calculated a(s) to 
establish a(w); hence the inverse nature of the procedure, first proposed by 
Smith (1974) (see also Smith, 1994). 

Let 
w(s) = ans

n+2 (8) 

where n is positive integer or zero (n > 0) and an a constant to be deter- 
mined, s varies between 0 and lp, so that (8) identically meets the require- 
ment that w(0) = 0 at the fictitious crack tip. Also dw/ds = 0 at s = 0, 
thereby satisfying the smooth closure condition. 

Substitution of (8) into eqns (6) and (7) gives, after simplification, 

K       E>      /n+ir(n+f)_   E> n;cr(n+|) () 
/_ 2V2     "     r(n + 2)      2V2 lv T(n + 2) 

a(y)     r(n+l)   ^— f Jn(y)   . ?/pr(n+|)|f lP(
n+h\ 
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where y = s/lp. From (8), we also have w(y)/wc = yn+3/2. Elimination of 
y between this and (10) gives the stress displacement relation a(w) in the 
FPZ corresponding to the assumed w(s) (8). The length of FPZ, lp can also 
be calculated, and is 

VST//      r(n + l)      2(7i+|)1~1 

lp 
E'wc(n+l)T(n+h     5{n + l) (11) 

The simplest example is one in which only one term (n = 0) is retained 
in (8). In this case, the stress-displacement law in the FPZ is 

a/fi=[l-{w/we)i]
k. (12) 

It is not always possible to eliminate y. This would be the case if we 
chose three terms (n = 0,1,2) in (8). It would then be necessary to perform 
the elimination numerically. When the numerical results have been fitted 
by polynomial approximation, the following relation results (7 = w/wc) 

77 = 1 - 9.243172 + 33.8259T
3
 - 59.4248T

4
 + 49.3000T

5
 - 15.4722/. (13) 

ft 
Irrespective of the number of terms chosen in (8), (9) and (11) give 

/p = /poo(l-A)-\        Ki = KIoo(l - A)1/2 (14) 

where A = lpoo/6, and 

lpoo = Ai E' wc/fl,     KIoo = y/A2E'wefl. (15) 

/poo is the length of FPZ when S = 00 or A = 0, i.e. when the second term 
in (3) is ignored. The constants Ai and A2 depend on the shape of the 
a(w) curve. For (12), Ax = 3/8, A2 = 3TT/16, and for (13), Ai = 28/39, 
A2 = 0.4969. 

We can also evaluate the energy expended in the FPZ, denoted Wg as 
well as the specific fracture energy GF 

rip    fW rwc 

Wd=        /    cr(w)dwds,       GF = a[w)dw. (16) 
Jo   Jo Jo 

The integrals in (16) can be evaluated analytically for the a(w) relation 
(12), but for the relation (13), numerical integration is necessary 

Wd = A3flw2
c/(l-\),       GF = AAftwc (17) 

where A3 = (9TT)/256, A4 = (3TT)/16 for relation (12), and A = 0.0521, 
A4 = 0.4969 for relation (13). 

We shall now adopt an approximate procedure for finite bodies sug- 
gested by Horii et al. (1987), to extend the above results. In this procedure 
the variation of stress intensity factor corresponding to the stress distribu- 
tion (3) is approximated by 
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Kj(r) = - f k(s) a0(r - s) ds = Ki [1 + r/(2<5)]. (18) 
Jo 

Ki(r) is used to identify the parameter A for a body of finite size, say 
a three-point notched bend beam or a crack line wedge loaded specimen 
(CLWL) as follows. The ratio Kj{r)/Ki = Y (ffi) /Y (^) is set up using 
the appropriate geometry function Y (^). For a three-point bend specimen 
Y ($r) is given by 

Y{a) = A0 + A1a + A2a
2 + A3a3 + A4a

4 (19) 

where a = a/W, and the constants AQ,---,A4 depend only on the span 
to depth ratio S/W. For S/W = 4, A0 = 1.93, Ax = -3.07, A2 = 
14.53, A3 = -25.11, and A4 = 25.80. For a CLWL the geometry function is 

Y{a) = (2+a)(0.886+4.64a-13.32c*2+14.72a3-5.64a4) (l-a)_f. (20) 

Next the ratio is expanded in Taylor's series about ^ and only the first 
two terms retained 

Äj(r)/Äj « 1 + [Y'(a)/Y(a)} (r/W) (21) 

where Y'{a) = dY(a)/da. 
A comparison of (21) with (18) immediately gives 

A = lpoo/5 = 2[Y'(a)/Y(a)] (lpoo/W) (22) 

where lp(X> can be chosen corresponding to the semi-infinite crack geometry 
(15) provided the stress distribution (3) has been used in its calculation. 

As an example, let us consider a three-point notched bend beam with 
S/W = 4. We find, after simplification 

IM=_1.59_ 12.53a+7.13«2 + 72.89a3 -122.01a4 =-1.59 - F (a)      (23) 
Y(a) 

where F(a) stands for the terms involving a. Likewise, for a CLWL speci- 
men we find 

^^=7.237- 56.244a +431.3a2 -3225.6a3 +23326a4 =7.237 - F (a).    (24) 
Y{a) 

From (15) and (22) we can write 

KI(r)/KIoo=[l-2{Y'(a)/Y(a)}(lpoo/W)}> (25) 

where lpoo and KIoo are given by (15). Substitution of (23) or (24) into (25) 
immediately gives the ratio of Ki/Ki^ for structures of one and the same 
geometry. Relation (25) therefore also gives the ratio of the corresponding 
failure stresses 

(VNUMUOO = [1 - 2A5(lpoo/W) + 2F(a) (lpoo/W) ]> (26) 
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where A5 = -1.59 for three-point bend beam and A2 = 7.237 for CLWL. 

5.   Discussion and Conclusions 

Let us rewrite some of the equations derived above in a form suitable for 
explaining many features of the fracture of quasi-brittle structures, and not 
only the size effect. 

First, we eliminate wc from (15) using (17) to get 

/Poo = (A1M4) (E'GF/f't
2) . (27) 

Next, we introduce a parameter 7(a) = A4 [A5 + F(a)] /A\. F(a) clearly 
reflects the influence of the geometry and initial notch depth of the speci- 
men. Substitution of (27) and j(a) into (26) gives 

{CTN)U/(<TN)UOO = [1 + iWch/W]* . (28) 

Despite the approximations made in arriving at (28), we have revealed 
that the origin of the size effect is in the non-singular stress distribution 
ahead of the notch/crack, represented by 8 (or A). In the process, we have 
also identified the physical basis of the many brittleness measures that had 
their roots in dimensional analysis and geometric similitude. 

As we have already identified lch with lpoo (27), the physical basis of 
the structural brittleness measure namely lch/W (2) becomes immediately 
apparent, and by inference also that of energy brittleness number se. The 
structural brittleness number ß of Bazant & Kazemi (1990), defined by (2) 
can also be immediately identified with W/[Zpoo7(ü!)] of (28). 

It is a common feature of all cohesive crack models, including that of the 
FCM, that GF{= JC) is uniquely determined by the area under the tension 
softening diagram. In general, GF is given by (17) where only the constant 
A4 depends on the shape of this diagram. Consequently, if the shape of 
a(w) has been accurately determined and the uniaxial tensile strength has 
been independently measured, then GF is known exactly, and one can use 
(17) to calculate wc — Jc/(Ai//). 

Let us now assume that the fracture of a test specimen occurs when 
Ki = K\c at P = Pmax. From (14) and (15) it follows that 

{Ke
Icf = A2E'wcft{l-X) (29) 

which may be rewritten in terms of GF(= JC) using (17) 

(Kjy = (A2/A4)E'Jc(l-X). (30) 

As A is negative for the three-point notched beam geometry and positive 
for CLWL geometry, and as (29) is based on ah effective LEFM concept, 
i.e. {Kjc)

2 = EJC, it would appear that the relation (30) is violated. What 
we have actually proved is that if Ki attains the critical value Kfc at the 
maximum load Pmaxi then at this instant the crack opening displacement 



22 B. L. KARIHALOO 

w must be different from its critical value wc, say equal to w*, so that the 
following relation is exactly met 

A2w*fl(l-\) = Je. (31) 
w* < wc for a three-point beam geometry, and w* > wc for CLWL geometry. 

We have proved from physical principles what is commonly observed in 
a test on three-point notched beam (or CLWL) specimen, namely that the 
peak load is attained before (or after) the stress-free crack begins to grow. 
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1.   Introduction 

The stress field close to a crack tip in an elastic isotropic solid can be 
expressed as an asymptotic expansion following Williams (1957): 

<Tij(r, 9) = Aij{6)r-2 + B^B) + Cij(0)rs + ■■■ (1) 

(r,0) are polar co-ordinates centred at the crack tip, and aij are the carte- 
sian components of the stress tensor. Focussing interest on the non-zero 
terms at the crack tip, the elastic field can be expressed in the form: 

°ij{r,9)= -^LfM + TS^Su (2) 

The first term embodies the stress intensity factor K, while the second 
term, denoted T, is a uniform stress a\\ = T, acting parallel to the crack 
flanks. The non-singular T-stress has now been tabulated for a wide range 
of geometries, in which the results are either expressed in terms of a stress 
concentration factor ^ or as a biaxiality parameter ß: 

ß = ^ (3) 

Results for some important crack geometries have been reviewed by Karstensen 
and Hancock (1994) and Sherry et al. (1994). 
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The role ot the non-singular T-stress on the development of elastic- 
plastic crack tip fields has been discussed by Larsson and Carlsson (1973), 
Harlin and Willis (1988, 1990) and Bilby et al. (1986). Betegon and Han- 
cock, (1991) demonstrated that all geometries which initially develop con- 
strained flow fields feature positive values of T, while geometries which 
exhibit unconstrained flow field feature negative values of T. In bending, 
single edge cracked bars with a/W> 0.3 exhibit positive values of T and 
develop fully constrained fields. 

Shallow cracked bars develop a negative T stress and lose crack tip con- 
straint. To predict the level of crack tip constraint in fully plastic specimens 
Betegon and Hancock, (1991) suggested that the full field solutions could 
be related to the modified boundary layer formulation at the same value of 
T. Modified boundary layer formulations are formal representation of con- 
tained yielding in which the plastic zone is contained within an outer elastic 
field defined by K and T. In both contained yielding and full plasticity, con- 
straint loss arises from a largely hydrostatic term which is independent of 
the distance ^ from the crack tip. This results in parallel stress profile at 
low levels of deformation when the loss of constraint only arises from T. 
O'Dowd and Shih (1991a,b) generalised these results by writing the stress 
field the form: 

^0 (ä)^(M)+4^(M0+---   (4) 

The first term in (4) is the HRR field. The amplitude of the second term 
is denoted Q. The angular functions er,-j and the integration constants /„ 
have been tabulated by Shih (1983). Q controls the level of constraint in the 
stress field. It is argued that the exponent q can be approximated to zero, 
leading to a distance independent second order term. Numerical solutions 
using modified boundary layer formulations however suggest that the fields 
are better expressed in terms of the small scale yielding (T=0) field: 

<Tij = a?fY + Qaohj (5) 

The small scale yielding (T=0) field comprises the HRR field plus some mi- 
nor but not insignificant higher order terms. Although modified boundary 
layer formulations are formal representations of contained yielding, Betegön 
and Hancock (1991) and Al-Ani and Hancock (1991) attempted to corre- 
late modified boundary layer formulations with full field solutions of a wide 
range of geometries into full plasticity. In order to correlate fully plastic 
solutions with small scale yielding solutions using modified boundary con- 
ditions, T was calculated in the same manner from the applied load or 
equivalently from the elastic component of J, in both cases. Although T 
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can simply be determined from remote loading parameters, Q can currently 
only be determined by detailed local finite element analysis. The present 
work is motivated towards developing schemes to estimate Q from remote 
loading parameters, and present some results from a more comprehensive 
study by Karstensen, Nekkal and Hancock (1995). 

2. Numerical Solutions 

2.1. MATERIAL RESPONSE 

Finite element solutions were obtained within the framework of small strain 
deformation as described by Hibbitt, Karlsson and Sorenson (1992). The 
material response was linear elastic at stress level less than the yield stress, 
GQ. In uniaxial tension the material response can be described by Hooke's 
law: 

a = Ee (a < aQ) (6) 

where E is Young's modulus. Poisson's ratio, v, was set to 0.3. Yield 
and associated plastic flow was modelled by incremental plasticity under 
the Prandtl-Reuss flow rules. The plastic response was approximated to 
a Ramberg-Osgood stress-strain relation which in uniaxial tension can be 
described by: 

- = - + *(-)" (7) 
So      cr0        V0 

Karstensen, Nekkal and Hancock (1995) have preformed numerical calcula- 
tions with a wide range of hardening rates, under both bending and tensile 
loading. In the present work data for n=13, £o=0.001 and a = | are pre- 
sented. 

2.2. FULL FIELD SOLUTIONS 

Numerical solutions have been obtained for a range of plane strain edge 
cracked bend bars shown schematically in figure 1. Symmetry allowed half 
the bar to be modelled. The crack length to width ratios which have been 
examined are £=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8 and 0.9. The height IE 
of the bars was 6 times the width. 

3. Constraint Estimation 

In order to illustrate the nature of the crack tip fields, numerical results 
for a shallow edge cracked bar (a/W=0.1, ra=13) are shown in figure 2. 
The hoop stress directly ahead of the crack is given as a function of ^ for 
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Figure 1.    Geometry of the edge cracked bend bars. 

increasing levels of deformation. The stress profiles are compared with the 
small scale yielding field which applies at very small levels of deformation 
when plasticity is a small perturbation of the elastic field. Initially the crack 
tip field can be expressed as the small scale yielding field plus a distance 
independent term. This can be seen at deformation levels of ^- = 417 and 
53 when the difference between the small scale yielding field and the full 
field solution is independent of distance beyond ^ = 10. At higher levels of 
deformation ^f- = 1.8 the difference between the full field solution and the 
small scale yielding field becomes distance dependent as the global bending 
field is encountered. This effect arises because the bar is subjected to a 
bending moment and the ligament remote from the tip is in compression. 

In order to examine the nature of the constraint loss, Q has been de- 
composed into two terms : 

Q = QT + QP (8) 

QT is determined from the modified boundary layer formulation as a func- 
tion of T and is independent of the distance ^ but dependent on the strain 
hardening rate. The residual term QP can be regarded as the difference be- 
tween the total loss of constraint given by Q and the loss of constraint given 
by a negative T. 

4.   QP Estimation for Single Edge Cracked Bars in Bending 

The nature of the residual constraint term Qp is now investigated. The 
distance dependency of QP is shown in figure 3, by plotting Qp as a function 
of level of deformation expressed in terms of the applied load, P normalised 
by the limit load Pumit, at distances ^=1,2 and 5 from the crack tip. The 
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Figure 2.    The hoop stress directly ahead of a crack SECB, a/W=0.1, n=13 at several 
levels of deformation 

limit loads were determined numerically from the non-hardening analysis, 
but agree closely with the expression given by Miller (1987). 

It is significant that the data for all geometries fall on the same curve, 
whose shape only depends on the strain hardening rate and the distance t^- 
from the crack tip. Karstensen, Nekkal and Hancock (1995) have described 
the form of this relation by: 

QP = k2(n) (-J- 
PL imit 

n+1 

(9) 

&2(n) is a tabulated proportionality constant, dependent on the strain hard- 
ening rate, but independent of geometry (a/W ratio or the ligament size 
c). This function is shown plotted for n=13 at a distance ^ = 2 in figure 
4. 

The relation between the plastic component of J and the load can be 
expressed in the form: 

a P 
JP = aaozochi—,n)(——) 

"" -L Limit 

n+1 (10) 

hi(a/W, n) is a function of the ^ ratio and the strain hardening, tabulated 
by Kumar, German and Shih (1980). Equations (9) and (10) suggest that 
Qp is linearly dependent on Jp. Figure 5 thus shows Qp as a function of 
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Figure S.    Qp as a function of -w^-— for Single edge bend bars at distances r§a-=l, 2 

and 5 from the crack tip. 
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of edge cracked bars (a/W=0.1 to 0.9). 

«** = *■>(?) (£)=*<»>#(*) (ID 
It can be seen that &i(n) is insensitive to the geometry (a/W), as all the 

0.50 

o.oo 

4.50 

-1.00 

-1.50 

-2.00 

$M*st—■ n 

l 
|SECB  n=13| 

D    G 

■ ■  ■ ■■ 

rv1 
■■ ■ ■■ ■ ■■ 

hv 1 i» j.i 
■ 

■        ■.." 
7 ■ 

**«• 
♦v.. 

* 

-ÖgHg- 
D °v VGC 

G 

G 

D^no 

■       ■ %           ■ 
• ■ 

♦ ♦ 

* 
♦ 

W0_2 

7 

Q 
D 

G 

U 
G 

*           * 7 

G 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Ar. 
j «r„ 
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ca0 

curves fall on the same straight line. At moderate distances from the tip 
Qp is linearly dependent on distance and may be thought of as a constraint 
gradient. Using the notation of Shih and O'Dowd (1992) 

*=$=^=«-Xi£r=<> (12) 

Complete expressions for the stress field may now be assembled from equa- 
tion (9). Firstly the results are assembled in a form which enables the stress 
field to be determined from the applied load. 

O"00        <7SSY 

00 00 
+ /(1,„)+Mn)(^)( 

PL imit 

n+l 
(13) 

Q e-p) '!£»»)+*•(? PL trntt 

n+l 
(14) 
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Secondly the results are expressed in a form which enables the stress field 
to be determined from the elastic and plastic components of J. 

£-^+'£fe"H»> (?)(£)    <15> 

(16) 

Values of the constants k\ and &2 have been tabulated for both bending 
and tension for a range of strain hardening rates in Karstensen, Nekkal and 
Hancock (1995). 

5.   Discussion 

The difference between the contained yielding prediction of Q based on T 
and the crack tip field in full field solutions has been denoted Qp through 
equation (8). The existence of a valid Q field beyond the predictions based 
on T requires the existence of a distance independent Qp term. Figures 3 
and 5 all clearly show that at levels of deformation at which significant de- 
viations occur from the modified boundary layer formulation, Qp increases 
with distance from the tip. For force loaded edge cracked bars, the distance 
independent Q term is accounted for by T, and that the deviation from 
J-T characterisation at finite distances from the tip arises from the global 
bending field. This difference cannot be described by a valid distance in- 
dependent term, and it is therefore necessary to conclude that Q does not 
significantly extend the two parameter characterisation of force loaded edge 
cracked bars in tension and bending beyond the limits of J-T characterisa- 
tion. It is also interesting to note that the form of the expressions suggests 
that at the crack tip the global bending term disappears leaving Q only 
dependent on T. 

In order to ensure a valid Q field, it is impractical to require that Q' is 
zero, and it is appropriate to allow a finite but restricted constraint gradient, 
Q'. In this context equation (13) provides a convenient way of determining 
QiiEü.) from the applied load in a form which parallels the J estimation 

schemes advanced by Kumar, German and Shih (1980). In deeply cracked 
bend bars the fully plastic field initially develops high constraint, and is 
well described by J through the HRR field, within the limitations of J 
dominance. Further deformation leads to a loss of crack tip constraint and 
a loss of J-dominance which has been clearly identified to arise from the 
global bending field. 
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Deviations from the fully constrained field of deeply cracked bars arises 
only from the distance dependent term Qp. A knowledge of J and k2 thus 
characterises the crack tip field. This provides a two parameter characteri- 
sation of deeply cracked geometries in which loss of constraint arises from 
the global bending field, and extends crack tip characterisation beyond the 
limits of /-dominance. 

6. Conclusions 

The development of crack tip constraint has been systematically exam- 
ined for edge cracked bars subject to bending. The initial loss of crack tip 
constraint is controlled by the sign of the non-singular T stress which is 
associated with fields which can be described by the small scale yielding 
field plus a distance independent term (Q). Within contained yielding crack 
tip characterisation can rigorously be achieved by T or equivalently Q. J-T 
characterisation does however extend in practice well beyond the formal 
limits of contained yielding if a notional value of T is calculated from the 
elastic component of J. 

At high levels of deformation both J-T and J-Q characterisation break 
down simultaneously due to the global bending field impinging on the crack 
tip. This results in a distance dependent term. In this context Q has been 
decomposed into a distance independent term QT which is formally related 
to T and a distance dependent term which is related to the global bending 
field. This has been expressed in terms of far field parameters such as the 
applied load and J. This constitutes a two parameter characterisation, and 
associated fracture criterion for deeply cracked bend bars, beyond the limits 
of «/-dominance. 

Shallow cracked bars show a very limited region of single parameter 
characterisation, as constraint loss originates from the compressive T stress 
associated with the elastic field. Characterisation can be extended by the 
use of a two parameter approach using J and T ( or equivalently J-Q). 
These fields eventually break down simultaneously due to the global bend- 
ing field impinging on the crack tip. At these deformation levels character- 
isation has been achieved by the use of three parameters, J, QT and Q' 
or Qp, this provides a complete crack tip constraint estimation scheme for 
edge cracked bars in bending. 
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1. Introduction 

The fracture mechanics of homogeneous materials is now well understood at 
temperatures below the creep range in terms of the stress intensity factor K and 
the J-integral. Practical structural integrity assessments of structures containing 
defects may then be carried out using the R6 procedure [1] and are equivalent to a 
J analysis of the structure. At high temperatures, the creep equivalent of J, the so- 
called C* integral [2], describes the stress and strain-rate fields close to the crack 
tip in widespread creep conditions and hence governs crack growth. For 
assessments of defective structures, estimates of C* may be combined with crack 
growth rate data a(C*) from simple specimen tests to estimate creep crack growth 
using the R5 procedure [3]. 

The theoretical basis of fracture mechanics at interfaces between dissimilar 
materials has been studied in linear elasticity and in power-law plasticity [4,5]. 
The crack-tip stress and strain fields are more complex than in the homogeneous 
case and are characterised by two parameters. J is nevertheless well-defined for 
cracks lying in the interface and is given by the same integral expression as in the 
homogeneous case. The analogy between power-law plasticity described by 

eP = Aon (1) 

where sp is plastic strain, a is stress and n,A are constants, and power-law creep 
given by 

ec = Aon (2) 

where ec is creep strain, then enables C* to be defined for interfacial cracks in 
dissimilar materials by replacing strains and displacements in the expression 
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for J by their respective rates. 
This paper describes detailed finite element analyses on a bi-matenal single 

edge notch tension (SENT) specimen under power-law plasticity. The strain 
hardening coefficient n in eqn.(l) is assumed the same in both materials. The 
effects on the J-integral of differences in the plastic strain coefficients A between 
the two materials is studied. _ u oo 

2. Geometry, Loading and Materials Properties 

The single edge notched tension (SENT) specimen 
is shown in Fig.l. Unit thickness T=l and plane 
strain constraint are assumed. Loading is by a 
uniformly distributed end load P=Twaoo- A crack 
of length a lies on the interface between Materials 
1 (y>0) and 2 (y<0). The ratio a/w of crack length 
to specimen width is taken to be 0.25. Similarly, 
the ratio L/w, where 2L is the specimen length, is 
equal to 2.5, which is sufficiently large to make 
end effects on crack tip field quantities negligible. 
The results for these values of a/w and L/w are 
representative of other a/w and L/w ratios. 

Stress, CT, and total (elastic plus plastic) strain 
are given in each material by the linear elastic, 
power law hardening response: 

-! = £. c«s. 
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Figure 1. The single edge notch 
(3)     tension (SENT) specimen under 

uniform remote loading 
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where n, e0, and a0 are constants for each material with e0=a0/E, E being 
Young's modulus. The hardening coefficient, n, Poisson's ratio, v, and E are the 
same for both materials. Then the material mismatch is quantified by the ratio 
B=a02/a01 of the normalising stress o0, where aoi (i = l,2) corresponds to 
Material i. Hence o02/a01=l in the homogeneous case whereas CT^/CTOI tends to 
infinity in the limit of a plastically deforming to rigid material combination. 
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Figure 2. A representative finite element mesh (a/w = 0.25, L/w = 2.5) for the 
bimaterial specimen showing remote and near tip mesh. 

3. Finite Element Mesh Details 

The finite element analyses use FEAP, a general purpose finite element code 
developed at Brown University, USA. The J-integral is computed within the code 
using a domain integral method. Four-node quadrilateral isoparametric finite 
elements are used except at the crack tip where collapsed quadrilateral elements 
are used. A typical mesh (Fig.2) uses about 3200 nodes and 3000 elements, with 
36 elements in the circumferential direction around the crack tip and a crack tip 
element radial dimension of 0.001a.  The precise number and distribution of 
elements varies as a/w and L/w vary, to give accurate results. 
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Figure 3.   Variation of the normalised finite element bimaterial load-point 
displacement (A) and J values with normalised load. 

4. Results 

J-integral values have been computed for n=4 and 10 and a range of stress ratios 
B defined by 
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B =  002/001 (4) 

Figure 3 shows the normalised load-point displacement and normalised J plotted 
against normalised load for different mismatch ratios B with n=4. The result for a 
homogeneous material is indicated by the solid line and for the same material 
bonded to a rigid substratum by the dashed line. 
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Figure 4.   Variation of ratio of bimaterial to homogenous J values with load. 

It can be seen that, for the rigid case, the slope of the curve is the same as for the 
homogeneous material in the fully-plastic region (the slope is given by n for the 
displacement-load curve and by n+1 for the J-load curve). At low loads, the J 
values for the bi-material cases correspond to the homogeneous value as the 
elastic properties of the two materials are identical. As the load increases and the 
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upper material deforms more than the lower one, the response tends to a value 
intermediate between the homogeneous and rigid responses. Eventually all the Im- 
material cases appear to reach a steady state with the slope given by n for the 
displacement-load curve and by n+1 for the J-load curve. 

a/W = 0.25 

-e-n = 4 
--©-- n=10 

0.4 _L _l_ 

1.0 3.0 5.0      7.0   9.0 
B 

Figure 5.   Finite element bimaterial results , variation of M (defined in text) 
against normalised load for n=4 and n= 10. 

In Fig.4a, the bi-material J values from Fig.3b are plotted normalised by the 
value of the homogeneous J at the same load level. As would be expected from 
the results shown in Fig.3b the ratio between J for the bi-material and the 
homogeneous J tends to a constant at high load. Apart from the rigid case, B->oo, 
the ratio is equal to unity in the elastic regime and there is a transition to fully- 
plastic behaviour as P/Po increases. For the rigid case, the ratio remains close to 
0.5 in the elastic and fully-plastic regimes. In Fig.4b the ratio is plotted for an 
n=10 material. In this case the transition to bi-material behaviour occurs sooner 
for the same B value. This is because, for the same B value, the bi-material effect 
is stronger for the larger n. Again for the rigid case the ratio remains close to 0.5. 
In the fully-plastic limit, the ratio is approximately 0.48 for n=10 and 0.50 for 
n=4. . ,       . 

In Fig.5, the limiting ratio at high loads between the bi-material and 
homogeneous J, designated M, is plotted as a function of B for a/w=0.25. Our 
calculations suggest that for a/w>0.2 this may be considered to be a geometry- 
independent quantity. . 

Finally, in Fig.6 the J values obtained from the finite-element analyses are 
compared with those obtained using the r|p approach and also a modified EPRI- 
GE J-estimation approach. These methods are first briefly described. 
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The EPRI-GE method [6,7] is based on solutions for pure power-law plasticity. 
In uniaxial tension, the homogeneous pure power-law material deforms 
according to 

i-aoS-r (5) 
£o        Co 

where a is a constant. For this material, J can be represented in terms of a 
dimensionless function hi(a/w,n) by 

a      P 
J=ccaoEo(w-a)—hi(— )n+1 (6) 

w     Po 

where Po is the plane strain limit load. The limit load used in this report, which is 
different from that used in [6,7], is due to Miller [8] and is believed to represent 
limit behaviour more accurately than the expression in [6,7]. The limit load is 
given by 

2 
Po = j=wTa0f(a/w) (7) 

with 

f(a/w) = l-a/w-1.232(a/w)2+(a/w)3 (8) 

for a/w<0.545. The hj function to be used in eqn.(6) is the value in [6] adjusted to 
account for the different limit load value. 

Equation (6) applies in the fully-plastic regime where the plastic strains 
dominate. However, in order to compare J estimates over the full range of loading 
it is necessary to include the elastic contribution to J. This is given by 

,t = KW) (9) 
E 

under plane strain conditions. The total J is then given by 

J = Je + Jp (10) 

with Jp given by eqn.(6). At higher loads the plastic strains dominate and Jp»Je. 
The expression used here for Je is somewhat different than that proposed in [6], 
where a modified Je was used. However, the effect of using this modified Je is 
rather insignificant and for simplicity is not used here. 
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Figure 6. Finite element modified load point displacement and modified EPRI 
values of J are plotted for various cases. 

The modified EPRI scheme to account for the dissimilar materials simply uses 
eqns.(6,9,10) with the h\ function multiplied by the appropriate M value from 
Fig.5. It can be seen from Fig.6 that the agreement between the calculated J and 
the modified EPRI estimate is good over all load levels. The error is largest in the 
elastic-plastic regime as the ratio of bi-material to homogeneous J (Fig.4) is not 
constant here but depends on the magnitude of the load. The maximum error 
here is about 15%. 

Alternatively,   J   may  be   estimated   using  the   experimental   load-point 
displacement method. Here, the plastic component of J, J«, may be obtained from 

Jp=,n, 
PAp 

n+1 T(w-a) 
(ii) 

where Ap is the plastic part of the load-point displacement. From [9], it may be 
taken that r|p= 1 for a tension geometry (but see below). As before we may take 
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the elastic part of J from eqn.(9) and the total J is given by eqn.(10). 

Results are presented in Fig.6 for two B values and a/w=0.25 for both n=4 and 
n=10; the same trends have been observed for all other mismatch ratios and crack 
geometries examined. An important result of the numerical analysis is that the r|p 
values obtained for the bi-material systems are almost identical to the values 
obtained from a homogeneous analysis; that is r|p does not depend on the 
mismatch ratio but only on the n value of the material and the crack geometry. As 
seen in Fig.6, the agreement between the computed J and J calculated from r|p is 
good in all cases, though for n=4, B=l .5 the agreement is not as good as the other 
cases in the elastic-plastic regime. 

5. Conclusions 

Elastic and elastic-plastic finite-element calculations have been performed for a 
bi-material SENT specimen with a/w=0.25. A range of material mismatch was 
considered. The ratio of the bi-material J to the homogeneous J decreases to a 
constant value as the load increases, the constant being a decreasing function of 
the mismatch a02/am. In the limit of the plastic-rigid combination, the ratio is 
approximately 0.5 when n=4 or 10. 

The T|p values for the bi-material system are very close to those obtained for a 
homogenous system with the same hardening exponent. Good agreement is 
obtained between the numerical and estimated J using the homogeneous r\p value 
and the finite element load point displacement. 
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Abstract. In this presentation the capabilities and the limitations of the 
near-tip constraint parameters like the Q-stress or the stress triaxiality 
are discussed. It is shown that these parameters are useful but they are 
not sufficient to explain the constraint effects observed experimentally, not 
even for plane strain conditions, i.e. for side grooved specimens. 

By a simple two-layer model the effects of geometry and size on the crack 
growth resistance are investigated. In addition to the in-plane constraint a 
reasonable indicator for the global out-of-plane constraint is proposed. The 
model brings new insight into the transferability problem. 

1.   Introduction 

How does the crack growth resistance curve of a given material change 
if the geometry and/or the size of the specimen is altered? Although a 
huge amount of experimental data exists on this subject, e.g. see [1], and 
although some partial aspects are understood, [2], this question is, generally, 
unsolved up to now. This question is very important since it touches the 
fundamental problem of transferring fracture properties from specimens to 
structural members of arbitrary shapes and sizes. 
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One of the most promising ideas to cope with this problem is the transi- 
tion from a one-parameter fracture mechanics to a two-parameter concept, 
e.g. the J-Q-theory [3,4]. It is the purpose of this presentation to highlight 
the capabilities but also the limitations of this concept. In the following 
section the J-Q-theory shall be outlined briefly. 

2.   The Q-Stress as a Measure of the Constraint 

The basic requirement for the application of a one-parameter fracture me- 
chanics is that one parameter, e.g. the J-integral J, characterizes the stress 
and strain field around the crack tip of a loaded body. This condition is 
fulfilled only for so-called "high constraint" crack geometries, e.g. for deeply 
notched bend specimens under well contained yielding conditions. In gen- 
eral two parameters, J and Q, are needed to describe the near-tip fields. 
The loading parameter J determines the deformation level and the Q-stress 
quantifies the constraint, i.e. the level of the hydrostatic stress, for a sta- 
tionary plane strain crack [5]. 

Q is defined as the hydrostatic difference stress between the actual stress 
aee (resulting from a finite strain Finite Element analysis) and some refer- 
ence stress aee ,ref [3-5], 

aee-cree^        for ö = 0, r = 2^    . (1) 

In Fig. 1 (from [6]) the hoop stress is plotted versus the distance r from 
the tip, both in non-dimensional form. The reference stress can be taken 
either from the HRR-field (for a power-law hardening material) or from the 
stress field from a small-strain FE-analysis. a0 denotes the yield stress and 
r and 6 are the polar co-ordinates originating at the crack tip. 

The comparison between actual and reference stresses is made at a 
certain distance ahead of the crack tip just beyond the process zone as given 
in Eq. (1), and Q is claimed to remain constant throughout a region ^ < 

r < K,JL [5^]. Therefore, Q is a measure of the local near-tip constraint. 
Negative Q-stresses mean loss of constraint. For different specimen types 
and geometries Q-stresses have been computed [3-6]. Large negative Q- 
stresses appear, e.g., for bend type specimens with very short crack lengths 
or for tension type specimens like centre cracked panels. Further it was 
found that Q decreases with increasing plastic zone size. But as all these 
computations were made for plane geometries under plane strain conditions 
the Q-stresses quantify the local in-plane constraint. 

In the literature several examples are presented where Q is used success- 
fully to scale for different specimen types and geometries, e.g., the slopes 
of J-Aa-curves (Aa = crack extension) for a ductile A710-steel [7] or the 
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Figure 1.   Computed hoop stress ahead of a crack tip is used for calculating the Q-stress, 
from [6]. 

J-values at the onset of brittle fracture of a mild steel at -50°C [8,5]. This 
is reasonable since with the decrease of Q the tensile mean stress within 
the process zone decreases. For ductile fracture this means that processes 
like void initiation and void growth are decelerated (leading to an enhanced 
crack growth resistance, i.e. a larger slope of the J-Aa-curve) and for cleav- 
age fracture that the attainment of the critical cleavage stress is impeded 
(leading to a higher J at the onset of catastrophic fracture). 

The T-stresses, T, [9] or the stress triaxiality, h, [10,11] are used as 
alternative measures of the local in-plane constraint sometimes. T is the 
second (r°-)term of the Williams series expansion of the stress field for a 
linear elastic body and, therefore, T is strictly applicable for small-scale 
yielding conditions, only. For these conditions T and Q are equivalent. 
The stress triaxiality is defined as the ratio of the mean stress, am, to the 
equivalent stress, aeq, 

h = 
an (2) 
'eg 

h is measured at a certain position ahead of the tip similar to the Q- 
stress. Its main advantage is that it can be used for a growing crack, too, 
contrary to Q and T which both originate from the fields of stationary 
cracks. 
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Are these constraint parameters sufficient to explain the geometry and 
size effects observed in experiments? This question will be answered in the 
following section. 

3. The Limitations of the Local Constraint Parameters in Ex- 
plaining Geometry Effects 

Fig. 2a collects three J-Aa-curves of a SAE4340 steel (a0 = 298 MPa, 
ultimate tensile strength au = 1040 MPa, Young's modulus E = 195 GPa). 
The curves are for CT-specimens with width W = 50 mm and thickness 
B = 25 mm but different initial crack length to width ratios, a0/W = 0.4, 
0.57 and 0.7. The dependency of the tearing modulus [12], 

TM = -07"    i (3) 
erg da 

i.e. the non-dimensional slope of the J-Aa-curve, is also plotted. It should 
be emphasized that all curves are computed curves (for plane strain condi- 
tions) assuming a constant critical crack tip opening displacement, COD; = 
102 fim, for initiation of crack extension and a constant local crack tip open- 
ing angle during growth of CTOAc = 11.5° [13]. The sizes of COD* and 
CTOAc were deduced from experiments, see the following section. The 
measured true stress vs. true strain curves were implemented pointwise in 
the analysis. The values of J were computed from the load vs. load-line 
displacement curves following the common standard procedures. Fig. 2b 
presents the computed normal stresses in front of the crack tip at the mo- 
ment just before initiation, J - J{ = 150kJ/m2, and Fig. 2c exhibits the 
local stress triaxiality at a distance of r = 0.2 mm « 2 CODi in front of 
the growing tip [14]. The stress triaxiality is equal for all crack lengths 
and it remains constant during a crack extension of 6 mm. As the normal 
stresses in Fig. 2b are (nearly) independent of ao/W the Q-stresses are 
(nearly) constant for the three a0/W-ratios. Nevertheless, the J-Aa-curves 
are different and the tearing modulus, TM, decreases during crack exten- 
sion in all cases. The conclusion is as follows: If the local in-plane constraint 
parameters are different this will have consequences on the slopes of the J- 
Aa-curves because the microscopic processes within the process zone are 
influenced by the different hydrostatic tension. However, the local in-plane 
constraint parameters are not sufficient for characterizing the shape of the 
J-Aa-curves, not even for plane strain conditions. The reason is that the 
global load vs. displacement behaviour of a specimen, and in turn the shape 
of the J-Aa-curve, are affected by the plasticity outside the near-tip region, 
and the amount of this plasticity is not fully characterized by a near tip 
constraint parameter [19]. 



b° 

GEOMETRY AND SIZE EFFECTS IN DUCTILE FRACTURE 47 

600 tn—■ 1 ■ > ■ ' ■ ' ■ ■ '—z\ 25 

500 

400 

.0 
130° 
1—1 

200 

100 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

0 
0.0 

\\   •     '     '     '     ■     ' *- 
\\ 

" V N  TM 
**               .-•' 

\ \ 
x \ \- ^ «* 
Xs--           s"' 

x.-             > —■s^'^ X.-.         s   ..r^*^^ — 
— \ y 

'. •J^^vL- • -. 

\&^      a/W=04*""^ 
jT                 aAV=0.57 '     *— -^   _ 
f                      --  a/W=0.7 . 

W=50 mm 
SAE4340 

I         .         1         . 

20 

15 

10 

# 
cd 

II 

1.0 2.0 3.0 4.0 

Aa (mm) 

a) 

5.0 6.0 

■■■■I1  '   i   ■—i—'—i—«—r   *   I   «—I—'—r- 

a/W=0.4 
  a/W=0.57 
-- a/W=0.7 

W=50mm 
SAE4340 

b 
II 

S3 

J.J 

3.0 

2.5 

■ 

iS"*" " ■*" 

2.0 - 

1.5 
  a/W=0.4 

1.0   aAV=0.57 
- -  a/W=0.7 

0.5 W=50 mm 
SAE4340 

0    12    3 4    5    6 

r/(JAr0) 

b) 

7    8    9   10 0.0     1.0 2.0     3.0     4.0 

Aa (mm) 

c) 

5.0     6.0 

Figure 2. a) Computed J-integrals vs. crack extension curves for CT-specimens with 
different a/W-ratios, b) normal stresses ahead of the tip just before initiation, c) stress 
triaxiality measured 0.2 mm ahead of the growing crack tip. Although the Q-stresses 
are equal and the stress triaxiality remains constant the J-Aa-curves are different and 
changing their slopes. 

From Fig. 2b it is seen that for üQ/W = 0.7 the normal stresses are a 
little bit smaller than for ao/W = 0.56 and 0.4. So for the smallest ligament 
length, bo = W — üQ = 15 mm, the Q-stress is a little bit smaller, obviously 
affected by the traction free back face of the specimen. This is contrary to 
the figures reported in the literature where Q should slightly increase with 
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increasing ao/W. It is remarked that for this specimen the Irwin radius of 
the plastic zone at initiation is r* « 1.5 mm and that the conditions for a 
valid Jic-test are easily fulfilled: 

b0 = 15 mm > 25— = 3.8 mm (4) 

Up to now only the in-plane constraint (for plane strain conditions) 
has been considered. But it is clear that the out-of-plane constraint has 
also a strong influence on the crack growth resistance: The J-Aa-curve 
of a thin specimen is steeper than that of a thick specimen. The out-of- 
plane constraint has a two-fold effect: On the one hand it changes the local 
fracture properties COD* and CTOAc along the crack front, on the other 
hand it affects the global load vs. displacement behaviour, e.g., it alters the 
size of the general yield load. 

In the next section a simple model is presented to separate influence 
factors for the geometry and size effects on crack growth resistance curves. 
This model leads to a proposal for a measure of the global out-of-plane 
constraint. 

4. A Two-layer Model to Separate Influence Factors for Geome- 
try Effects 

Plain sided fracture mechanics specimens are divided into two side-surface 
layers of total thickness Bs in plane stress and a center layer of thickness 
Be = B-Bs in plane strain (Fig. 3). The resistance curves of the specimens 
are modeled by treating fracture initiation and crack growth in the two 
layers separately [15]. For each layer initiation and growth are controlled 
by a local COD; and a constant local CTOAc at the moving tip. Commonly 
the plane stress layer behaves tougher than the plane strain layer, i.e. the 
CODj and CTOAc-values are larger. 

The idea of the model is that the relative thickness of the plane stress 
layer, i.e. the ratio Bs/B which can be easily determined (see below), pro- 
vides an indicator of the global out-of-plane constraint of the specimen. The 
influence of the fracture behaviour of the material can be modeled by chang- 
ing the sizes of the controlling toughness parameters, COD; and CTOAc. 
The effect of the in-plane constraint can be tested by comparing the results 
of the plane strain analyses for different geometries and by checking the 
local crack tip fields to determine the above mentioned in-plane constraint 
parameters. The controlling toughness parameters, i.e. the CODj/CTOAc- 
pairs can be determined experimentally. E.g., for a low strength annealed 
structural steel this was done by stereophotogrammetric studies of the frac- 
ture surfaces near the specimen midsection (for the plane strain layer) and 
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near the side surfaces (for the plane stress layer) [15]. For a SAE4340 the 
results of a multi-specimen Jic-test were used to plot the local crack ex- 
tension (near the midsection and near the side surfaces) versus the load 
line displacement. From these curves the CODj- and CTOAc-values can be 
deduced [13]. 

plane stress, Bs 

CODiS, CTOV 

plane strain, Be 

CODA CTOAc' 

Figure 3.    The two-layer model for computing resistance curves for different geometries 
and sizes. 

The ratio Bs/B is estimated by two 2D-Finite Element analyses for 
plane strain and plane stress conditions and one 3D-analysis with a rather 
coarse mesh [16]. All three analyses are performed for a stationary crack. 
By comparing at a given load line displacement v the "true" load, i.e. the 
load of the 3D-analysis, to the loads from the plane stress and plane strain 
analyses the correct thicknesses of the plane stress and the plane strain 
layers can be determined (Fig. 4). Bs/B decreases with increasing v but 
soon it reaches a saturation value, ßs = (Bs/B)sax. The ratio Bs/B or its 
saturation value ßa seem to be natural indicators of the global out-of-plane 
constraint. 

The benefit of the two layer model is that an expensive 3D-simulation 
of crack extension can be replaced by two 2D-analyses plus one (cheap) 
3D-analysis for a stationary crack. For details of the computations and the 
validation of the model, see [16, 17]. In some previous studies this two layer 
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model was applied to investigate geometry and size effects in CT-specimens. 
The main results of these studies are the following: 

1. For a given material and different geometries under large-scale or gen- 
eral yielding conditions Bs/B or ßs is a function of the ratio of the 
specimen thickness, B, to the ligament length, b. In a similar way the 
slope of the J-Aa-curve scales with the B/6-ratio if CTOAc is held 
constant [17]. HB/b is small, ßs is large, the out-of-plane constraint is 
small and the specimen behaves like a thin specimen, i.e. ^ is large. 

2. For a given geometry and different materials the ratio Bs/B depends 
on the relative size of the plastic zone, ry/b, and the strain hardening 
exponent n. The saturation value ßs is only affected by n. ßs increases, 
i.e. the out-of-plane constraint decreases, with increasing n [17]. 

3. Different patterns of geometry behaviour may appear for a given mate- 
rial depending on whether side-grooved or non side-grooved specimens 
are used [13]. High- and low-strength materials may exhibit different 
patterns of geometry behaviour [13,18,19]. 

4. The ratio CTOA<: is crucial for the crack growth behaviour and it de- 
termines the tendency to unstable crack extension [18,19]. (eo = uo/B 
is the yield strain.) 

B 

OH 

5 
CO 

Figure 4. The relative thickness of the plane stress layer, Bs/B, is determined from 
computed load vs. displacement curves for a stationary crack. Bs/B decreases with in- 
creasing loading but it reaches a saturation value, ß„ if large scale yielding conditions 
are reached. 
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5.   Conclusions 

Local in-plane constraint parameters like the Q-stress or the stress triaxial- 
ity are useful tools but they represent only one influence factor on geometry 
effects among others. The out-of-plane constraint is equally important. 

The near tip constraint (in-plane and out-of-plane) can probably charac- 
terize the sizes of the local fracture toughness properties COD; and CTOAc 

as the microscopic processes of fracture occur within the process zone close 
to the crack tip. On the contrary to fracture, plastic deformation is — 
apart from contained yielding conditions — not concentrated only around 
the crack tip. Global constraint parameters must be used to scale the global 
deformation behaviour. This is the reason why the local near tip constraint 
cannot quantify the widespread plasticity within a specimen. Even for plane 
strain conditions the J-Aa-curves may be different for two geometries al- 
though the near-tip constraint parameters are equal. 

Our simple two layer model has brought new insight into the trans- 
ferability problem and a proposal for a reasonable indicator of the global 
out-of-plane constraint. 

References 

1. Turner, C.E. (1990) A re-assessment of the ductile tearing resistance, Part I and 
II, in D. Firrao (ed.) Fracture Behaviour and Design of Materials and Structures, 
Proc. of ECF8, EMAS, UK, Vol.11, pp.933-968. 

2. Kolednik, 0.(1993) A simple model to explain the geometry dependence of the 
J-Aa-curves, Int. J. Fracture 63, 263-274. 

3. O'Dowd, N.P. and Shih, C.F. (1991) Family of crack-tip fields characterized by a 
triaxiality parameter - I. Structure of fields, J. Mech. Phys. Solids 39, 989-1015. 

4. O'Dowd, N.P. and Shih, C.F. (1991) Family of crack-tip fields characterized by a 
triaxiality parameter - II. Fracture applications, J. Mech. Phys. Solids 40, 939-963. 

5. O'Dowd, N.P, Shih, C.F. and Dodds, Jr., R.H. (1995) The role of geometry and 
crack growth on constraint and implications for ductile/brittle fracture, in M. Kirk 
and A. Bakker (eds.), Constraint Effects in Fracture: Theory and Applications, 
ASTM STP 1244, American Society for Testing and Materials, Philadelphia. 

6. Dodds, Jr., R.H., Shih, C.F. and Anderson, T.L. (1993) Continuum and microme- 
chanics treatment of constraint in fracture, Int. J. Fracture 64, 101-133. 

7. Hancock, J.W., Reuter, W.G. and Parks, D.M. (1993) Constraint and toughness 
parameterized by T, Constraint Effects in Fracture, ASTM STP 1171, American 
Society for Testing and Materials, Philadelphia, pp.21-40. 

8. Sumpter, J.D.G. and Forbes, A.T. (1992) Constraint based analysis of shallow crack 
in mild steel, in: M.G. Dawes (ed.) Shallow Crack Fracture Mechanics, Toughness 
Tests and Applications, TWI, Cambridge, UK, Paper 7. 

9. Betegon, O, and Hancock, J.W. (1991) Two-parameter characterization of elastic- 
plastic crack-tip fields, J. Appl. Mech. 58, 104-110. 

10. Sommer, E. (1989) Progress in the assessment of complex components, in: K. 
Salama, R. Ravi-Chandar, D.M.R. Taplin and P. Rama Rav (eds.) Advances in 
Fracture Research, Proc. of ICF7, Pergamon Press, Vol.3, pp.1999-2010. 

11. Brocks, W. and Schmitt, W. (1995) The second parameter in Jü-curves: constraint 
or triaxiality, in M. Kirk and A. Bakker (eds.), Constraint Effects in Fracture: The- 



52 0. KOLEDNIK ET AL. 

ory and Applications, ASTM STP 1244, American Society for Testing and Mate- 
rials, Philadelphia, pp. ,.       , •,•       r 

12 Paris, P.C., Tada, H., Zahoor, A. and Ernst, H. (1979) The theory of instability of 
the tearing mode of elastic-plastic crack growth, in J.D. Landes, J.A. Begley and 
G.A. Clarke (eds.) ASTM STP 668, American Society for Testing and Materials, 
Philadelphia, pp.5-36. 

13 Shan G X., Kolednik, 0. and Fischer, F.D. (1995) A numerical study on the influ- 
ence of geometry variations on stable crack growth in GT specimens for different 
materials, in M. Kirk and A. Bakker (eds.), Constraint Effects in Fracture: Theory 
and Applications, ASTM STP 1244, American Society for Testing and Materials, 
Philadelphia, pp.71-87. .     . 

14 Shan G X Kolednik, O. and Fischer, F.D. (1994) Numerical investigations of stable 
crack growth in CT-specimens of SAE4340 steel, in M.H. Aliabadi, A. Carpinten, 
S. Kalisky and D.J. Cartwright (eds.) Localized Damage II, Computer Aided Assess- 
ment and Control, Computational Mechanics Publications, Boston, pp.399-406. 

15 Shan, G.X., Kolednik, O., Fischer, F.D. and Stüwe, H.P. (1993) A 2D-model for 
the numerical investigations of the stable crack growth in thick smooth fracture 
mechanics specimens, Engng Fracture Mech. 45, 99-106. 

16 Shan G.X, Kolednik, O., Stüwe, H.P. and Fischer, F.D. (1992) A substitution 
method for 3D elastic-plastic FE-analyses of fracture mechanics specimens, Engng 
Fracture Mech. 41, 625-633. . 

17 Shan G.X, Kolednik, O. and Fischer, F.D. (1994) A numerical investigation of 
the geometry dependence of the crack growth resistance in CT-specimens, Int. J. 
Fracture 66, 173-187. . 

18 Shan G.X, Kolednik, O. and Fischer, F.D. (in press) A numerical study on the 
crack growth behaviours of a low and a high strength steel, Int. J. Fracture. 

19 Kolednik, O, Shan, G.X. and Fischer, F.D. (in press) The energy dissipation rate 
- a new tool to interpret geometry and size effects, submitted to R.S. Piascik (ed.) 
Fatigue and Fracture Mechanics: 27th Volume, ASTM STP 1280, American Society 
for Testing and Materials, Philadelphia. 



MECHANISM-BASED CELL MODELS FOR FRACTURE IN 

DUCTILE AND DUCTILE/BRITTLE REGIMES 

C. FONG SHIH, LIN XIA AND LI CHENG 

Division of Engineering 
Brown University, Providence, RI02912 USA 

Abstract. The fracture resistance of ferritic steels in the ductile/brittle 
transition regime is controlled by the competition between ductile tearing 
and cleavage fracture. Under typical conditions, a crack initiates and grows 
by ductile tearing but final failure occurs by catastrophic cleavage fracture. 
The zone of tearing is modeled by a layer of void-containing cells char- 
acterizing the spacing and volume fraction of voids in material elements 
lying in the plane of fracture. These cell elements incorporate the soften- 
ing characteristics of cavity growth and its strong dependence on stress 
triaxiality. Under increasing strain, the voids grow and coalesce to form 
new crack surfaces thereby advancing the crack. Crack growth causes sig- 
nificant alterations in the stress field, the process zone size and directly 
affects the initiation of cleavage fracture. These effects are accounted for 
by incorporating weakest link statistics into the cell element model. The 
cleavage fracture model also takes into account the increase of sampling 
volume with crack growth and the competition between void nucleation 
from carbide inclusions and unstable inclusion cracking which precipitates 
catastrophic cleavage fracture. The model is not limited by the extent of 
plastic deformation nor the amount of ductile tearing preceding cleavage 
fracture. Load-displacement behavior, ductile tearing resistance and tran- 
sition to cleavage fracture are discussed for several different test geometries 
and a range of microstructural parameters. The model predicts trends in 
the ductile/brittle transition region that agree with experimental data. 

1. Introduction 

This paper reviews some recent results on ductile tearing obtained by cell 
element models. Several new results with implications on the competition 
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between ductile tearing and cleavage fracture and the transition from tear- 
ing to catastrophic cleavage are discussed. 

Micrographs of fractured ferritic steel test specimens provide much in- 
formation on ductile tearing mechanisms and characteristic length scales. 
Particularly relevant are repeated observations of void growth and coales- 
cence being confined to a macroscopically planar fracture process zone of 
one or two void spacings in thickness; outside this region, the voids exhibit 
little or no growth. Shih and Xia (1995) observed that it is advantageous to 
model this fracture process region by a layer of void-containing cells repre- 
sentative of the spacing and volume fraction of voids in material elements 
lying in the plane of fracture as illustrated in Fig. 1. As shown in the fig- 
ure, a cell element is a three-dimensional entity with characteristic length 
D which contains a centered spherical void whose initial volume fraction 
of the cell is /0. Salient features of a cell element are described in Section 
2. Among other things, the cell element arrangement employed allows us 
to circumvent computational complexities arising from crack path tortu- 
osity or non-planarity on the microscale which appear to be controlled in 
large part by microstructure and by micron/submicron scale deformations 
leading to void nucleation (Xia and Shih, 1995a, 1995b). This is not to say 
that crack advance away from the plane ahead of the initial crack should 
be disregarded. Indeed, crack growth on inclined planes and the formation 
of shear lips are clearly identifiable macroscopic modes of crack extension 
at low levels of constraint. With some additional work, the present model 
can be extended to handle these important situations. Such studies are in 
progress. For the present, crack growth is confined to the plane depicted in 

Fig. 1. 
The aggregate of cells introduced on the fracture plane is character- 

ized by several fracture process parameters, the two most important be- 
ing /o and D. In the case of ferritic steel, D and /0 are related to the 
spacing and the initial volume fraction of voids originating from sulphide 
and oxide inclusions. This cell aggregate is embedded within a convention- 
al elastic-plastic continuum described by the usual material parameters: 
Young's modulus, Poisson's ratio, yield stress and strain hardening expo- 
nent. Once the fracture process parameters are calibrated using one set of 
experimental crack growth data, our approach permits computation of re- 
lationships among loads, displacements and crack growth, including states 
where stability is lost. One of the main advantages of the present compu- 
tational model is the fact that the model can be used to analyze structural 
response under conditions of extensive yielding and large crack advance 
without recourse to any fracture resistance curve. Indeed, Xia, Shih and 
Hutchinson (1995) have successfully predicted details of the load, displace- 
ment and crack growth histories of several specimen geometries which are 
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Cell Element 
with Void 

7m 
Layer of Void-Containing 
Cell Elements 

Figure 1. (a) Ductile fracture by void nucleation, growth and coalescence, (b) Fracture 
process region modeled by cell elements. Cell softening characteristics depend upon /o 
and stress triaxiality. 

known to give rise to significantly different crack tip constraints. 
Cleavage fracture data in the transition region is marked by scatter. 

This scatter, as well as the cleavage fracture toughness, increases with tem- 
perature. Raising the temperature also increases the amount of ductile tear- 
ing that precedes cleavage fracture. Some explanations for behaviors noted 
above can be found from computational studies using the above cell model 
in conjunction with weakest link statistics. The latter introduces an addi- 
tional parameter ms characterizing the size distribution of carbide particles. 
Exploratory studies to be discussed show that the augmented model pre- 
dicts trends in ductile fracture resistance and ductile/brittle transition that 
agree with experimental data. 

2. Cell Model for Ductile Tearing 

A cell is a basic (smallest) material unit that contains sufficiently complete 
information on the essential characteristics of material separation. Cell el- 
ements should be viewed as three-dimensional entities which are initially 
cubes with dimension D related to the characteristic microstructural length 
in the cavity growth/coalescence process. A similar point of view has been 
advocated by Rousselier (1987), Brocks et al. (1995) and others (see Xi- 
a, Shih and Hutchinson, 1995, for a more complete list of works). In our 
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work, we employ Gurson's constitutive relation as modified by Tvergaard to 
describe the stress-strain behavior of a single cell element containing a cen- 
tered spherical void of initial volume fraction f0 (Gurson, 1977; Tvergaard, 
1990). Because a cell element is a three-dimensional entity, its behavior 
depends upon tractions in all three directions (normal and parallel to the 
crack plane) as depicted in Fig. lb. It is this discrete three-dimensional 
nature that enables cell elements to capture the critical features of duc- 
tile tearing including the strong triaxial stress effects on cavity growth and 
cavity-crack tip interaction on the scale of D. 

Two material state parameters — the current void volume fraction / 
and the current flow stress of the matrix ä — govern a cell's stress-strain 
response. The void in a cell grows under increasing strain. A cell loses 
stress carrying capacity when the hardening of the matrix is insufficient 
to compensate for the reduction in the cell ligament area caused by void 
growth. This loss of stress carrying capacity accelerates at some level of void 
volume fraction corresponding to the final stage of the coalescence process. 
Beyond this stage, the cell no longer supports any traction and the crack 
advances across that cell. In our work, the final stage of material separation 
is modeled by a cell traction (reduction) elongation relation which takes 
effect when / equals fE. The response of a cell element prior to coalescence 
is largely controlled by the initial void volume fraction /0. That is, the 
volume fraction of large inclusions (sulphides and oxides) dictates the pre- 
coalescence cell behavior. However, small particles (e.g. carbides) play a 
critical role in the coalescence phase by nucleating microvoids which can 
greatly assist the process of cavity link-up. Indeed, under certain conditions 
the coalescence phase is primarily one of microvoid cavitation, a mode of 
coalescence in which relatively little energy is expended (Faleskog and Shih, 
1995). For the present, the simplest way to take some account of coalescence 
by microvoid cavitation is by adjusting the value of /0 and the critical value 
for final cell extinction, /#. 

An important concept in mechanism-based fracture mechanics is the 
fracture process zone (FPZ). The necessity of incorporating FPZ into duc- 
tile fracture models has also been discussed by Broberg (1996) and Cotterell 
and Atkins (1996). In our approach, the FPZ can be defined by the col- 
lection of cells in which the strain softening due to void growth cannot be 
compensated for by material strain hardening resulting in a loss of stress 
carrying capacity. The primary parameters controlling fracture process zone 
size are /0, matrix hardening properties and crack tip constraint. The com- 
bination of high constraint and large f0 results in an FPZ extending over 
many cell elements. By contrast, low constraint and a small /o results in 
an FPZ on the order of the void spacing; here the tearing process involves 
the interaction between the tip and one or two discrete voids ahead of it. 
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As already noted, the cell model can be used in the latter situation and in 
the former where multiple interacting voids form the FPZ. 

3. Work of Fracture 

Obviously, the fracture process must obey an energy balance and under 
small scale yielding conditions the balance relation is simply given by 

G = T (1) 

where Q is the Griffith-Irwin energy release rate. The total work of fracture 
per unit area of crack advance, T can be partitioned into the work of the 
fracture process To and the plastic dissipation in the background material 
Tp, that is, 

r = r0 + TP + TE (2) 

where TE is the additional contribution taking into account the work related 
to changes in the process zone size and the elastic energy variation within 
and just outside the plastic zone due to changes in the plastic zone size. 

In a ductile metal the separation process is dominated by cavity growth 
and coalescence with a FPZ size on the order of 10~4 m. The work required 
to rupture a voided cell of unit area in the plane of the crack defines the 
work of the fracture process To which has a weak dependence on constraint 
within the range found to exist near the tip of a crack (Xia and Shih, 
1995b). For the first increment of growth, it is argued that r0 > Tp + TE 

so that T at crack initiation, T/, is nearly equal to r0. By contrast, Tp 
can be much greater than T0 when crack extension is large compared to 
D, but more importantly Tp depends sensitively on crack tip constraint 
(Tvergaard and Hutchinson, 1994; Shih and Xia, 1995). In the limiting 
situation of steady state growth, both the process zone length and the 
stress field (with respect to the advancing crack tip) are unchanging so 
that only T0 and Tp contribute the total work of fracture, 

r = r0 + rP. (3) 

Actually a small amount of elastic energy is locked in the plastic wake but 
this can be added to Tp. 

We can draw the conclusion that a resistance curve, T (including steady- 
state toughness), is not a property of the material. As a matter of fact, crack 
geometry can exert a strong effect on T even under small scale yielding as 
has been measured experimentally by Hancock, Reuter and Parks (1993) 
and computed by Tvergaard and Hutchinson (1994), Shih and Xia (1995) 
and Xia and Shih (1995a). Geometry effects on crack growth resistance 
curves are most readily apparent under large scale yielding. Such data in 
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Figure 2. (a) Plastic flow (shown by shaded region) near stationary crack causes loss 
of constraint, (b) Crack growth increases constraint (x measured from tip of advancing 
crack 

the form of J vs. crack advance have been reported by Joyce and Link 
(1995). 

4. Evolution of Crack Opening Stress 

The evolution (loss) of constraint as plasticity progresses from small scale 
yielding to full ligament yielding has been investigated by Betegön and 
Hancock (1991) and O'Dowd and Shih (1991). Figure 2a shows the behavior 
of the crack opening stress vs. distance normalized by the crack tip opening 
displacement for three levels of plastic flow. The results presented here and 
in the next section are obtained from plane strain analyses. This loss of 
constraint (or reduction in tensile opening stress) under increasing plastic 
flow has been discussed by several investigators (see O'Dowd and Shih, 1994 
and references therein). The opposite trend is found for a growing crack. 
Figure 2b displays the crack opening stress vs. distance (normalized by D) 
measured from the tip of the advancing crack for three amounts of crack 
growth. This elevation of the stress over a physically significant distance 
ahead of the tip is found in typical test specimens (Xia and Shih, 1995b, 
1996). A conclusive analysis showing constraint elevation under steady- 
state crack growth has been carried out by Varias and Shih (1993). Their 
steady-state result is generic in that it is not tied to any model of material 
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Aa(mm) 

Figure 3. Comparisons of the opening stress on the plane of fracture for crack advance 
equal to D, 10D and 20D. (b) The relation between J and crack advance in TPB and 
CCP. 

separation or fracture criterion. The result is valid as long as the fracture 
process zone is a small fraction of the plastic zone size and the latter is small 
compared to a characteristic crack dimension. A similar result is found to 
apply to rate-dependent solids (Xia and Cheng, 1996). 

Figure 3a displays cell model predictions of the tensile traction across 
the plane of the crack for material parameters chosen to reproduce the 
behavior of A533B steel. Stress distributions are shown for crack growth 
equal to D, 10D and 20D in a center-cracked panel (CCP) and three- 
point-bend (TPB) specimens for three different ratios of crack length over 
width, a/W. The elevation of peak stresses in all the geometries considered 
can be clearly seen, particularly in the lowest constraint geometries (TPB, 
a/W = 0.1 and CCP a/W = 0.6), shown by the dash-dot curve and the 
dot-dot curve. 

Figure 3b compares the relation between J and crack advance for the 
above geometries. The J values were computed using the line-integral def- 
inition on a remote contour. The strong geometry dependence of the J- 
resistance curves is strikingly evident. The highest resistance curves are 
found in the CCP and the shallow flaw TPB specimen, geometries with 
the lowest constraint. These two resistance curves are in close agreement 
and this is not unexpected in light of the similarities between the stress 
distributions for the two geometries (see Fig. 3a). 

Contour maps of the maximum principal stress provide the most com- 
pelling description of constraint elevation with crack growth. Figure 4 
displays results for the shallow flaw TPB geometry. A high stress zone, 
ci/oo > 3.5, is non-existent at early growth (see contour map for Aa equal 
to D). However, high stress zones extending over distances ranging from 
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2.00 2.33 2.67 3.00 3.33 

Figure 4. Contour maps of maximum principal stress for crack advance equal to D, 
10D, 20D and 25D in shallow crack three-point-bend specimen, a/W=0.1, W=50mm, 
E/<rl=5Ö0, N=0.1, ^=0.3; D=200/Hn, /o=0.005 

102? to 152? can be found at later stages of growth, Aa > 102? (see con- 
tour maps for Aa = 20 and 252?). It is important to note that both the 
peak stress and the spatial extent of high stress increase with crack growth. 
Constraint evolution in the CCP and the other two TPB geometries display 
similar trends as can be anticipated from the stress results in Fig. 3a. 

5. Statistical Model for Cleavage Fracture in the Ductile/Brittle 
Regime 

Treatment of the initiation of unstable cleavage fracture by way of ex- 
treme value statistics has been discussed by several investigators including 
Beremin (1983), Mudry (1987), Wang (1991), Wallin (1993) (also see the 
references therein). In these studies a weakest link mechanism is assumed 
for cleavage fracture. That is to say, at some point during the loading a 
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Figure 5.   Distribution of carbide inclusions which are potential cleavage fracture trigger 
sites. 

microcrack nucleates at a critical second phase inclusion and this event is 
sufficient to precipitate catastrophic cleavage fracture. This approach has 
been extended by Koers et al. (1995) and Xia and Shih (1996) to take full 
account of the ductile crack growth prior to cleavage fracture. Two effects 
are associated with ductile crack growth: the cumulative sampling volume 
is increased and the crack tip constraint is increased (see Figs. 3 and 4). 
This has serious implications. It suggests a significant increase in cleavage 
fracture probability which is taken up next. 

Figure 5 illustrates the idea upon which our model is based. Under high 
constraint (and high yield stress), many carbide inclusions are potential 
trigger sites for cleavage fracture. Therefore the conditions for cleavage 
fracture can be met before any significant amount of ductile tearing occurs. 
By contrast, under low constraint the eligible cleavage fracture trigger sites 
are limited to large carbide inclusions which are few in number. Therefore 
the crack has to grow by some amount in order that the advancing stress 
field could sample an eligible cleavage crack nucleus. Consequently cleavage 
fracture in a low constraint geometry is typically preceded by some amount 
of ductile tearing. 

The alteration of constraint and the increase of sampling volume with 
crack growth are fully incorporated into a weakest link cleavage model em- 
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Figure 6. A statistical model for cleavage fracture in the ductile/brittle transition 
region. On the average each cell Vi contains one large (sulphide/oxide) inclusion and 
many carbides particles (Xia and Shih, 1995c). 

ployed by Xia and Shih (1996). Figure 6 depicts the essential features of 
their model. This model also accounts for the competition between the nu- 
cleation of voids from carbide inclusions and the unstable cracking of such 
inclusions precipitating catastrophic cleavage fracture. A natural outcome 
of the model is the Weibull stress, aw, based on the sum of products involv- 
ing cell volumes Vi and stresses averaged over these cells. The expression 
for the Weibull stress and its derivation is given in Xia and Shih (1996). 
Once aw is known, the cleavage fracture probability is computed using 

Pf = 1 - exp [-&)' (4) 

where au is a scaling stress and ms characterizes the size distribution of 
cleavage fracture triggering inclusions as was already noted. 

Figure 7a displays the evolution of dw (= <rw/<ru) vs. J-integral for 
the crack geometries considered in Fig. 3. It can be seen that at the same 
level of applied J the cleavage fracture probability is lowest for the shallow 
TPB geometry and the CCP. These results can be used in the following 
way. Suppose cleavage fracture in a TPB specimen, a/W = 0.6 and W = 50 
mm, occurs at Jc = 200 kJ/m2. We wish to determine Jc for the other test 
specimens. Direct your attention to the solid curve in Fig. 7; for J = 200 
kJ/m2, aw fa 0.9. Moving horizontally across the diagram with äw fixed at 
0.9 (implying equal probability of cleavage fracture) we find that Jc = 330 
kJ/m2 for a/W = 0.25, Jc = 964 kJ/m2 for a/W = 0.1; for the CCP, 
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Figure 7. Geometry effect on the evolution of Weibull stress with J-integral for (a) four 
different a/W ratios with W=50mm and (b) three different widths, W, with a/W=0.6 
and B=W/2. 

Jc = 844 kJ/m2. That is, the predicted cleavage toughness for the two 
geometries with the lowest constraint are more than four times larger! 

The strong effect of specimen size on cleavage fracture can be seen in Fig. 
7b which displays computed Weibull stresses for CCP and TPB specimens 
for a/W = 0.6 with W equal to 50, 100 and 300 mm. [B = W/2 is used 
here.] Contrast the strikingly different trends — ayp's approach limiting 
values for the smallest specimens while they increase steadily for the larger 
geometries. The predicted trends of cleavage fracture toughness with crack 
size and geometry are consistent with available experimental data. 
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EFFECTS OF SIZE SCALE ON FRACTURE PROCESSES IN 
ENGINEERING MATERIALS 

JOHN F KNOTT 
School of Metallurgy and Materials 
The University of Birmingham 

Introduction 

This paper treats two aspects of size-scale. The first is concerned with the size- 
scale at which fracture events are analysed. Although there are substantial overlaps, 
four main size-scales may usefully be recognised, as follows: 

i) the MACRO -scale. This is concerned with events at the "engineering" level, and with 
material properties treated as those of a continuum. Generally, the size-scale is upwards 
of a few mm but, in some situations, such as that of a single dominant crack in a high- 
strength steel of homogeneous microstructure, continuum concepts can be carried down 
to a defect size of 0.2mm. 

ii) the MESO-scale. This comprises inherent "defects" or inhomogeneties, produced by 
processing or fabrication, which are smaller than the non destructive-testing (NDT) 
limit. Such defects could be grain-boundary voids in a ceramic; non-metallic 
inclusions in wrought metallic alloys; "brittle patches" in multi-pass welds or in dual- 
phase steel microstructures. A very rough estimate of the size-range is 20mm-0.2mm. 
In ceramics, defects of length 50|im can produce catastrophic failure at a stress of only 
160 MPa. For ultra-high strength maraging steel, a defect of length 75|im could 
produce catastrophic failure at a stress of 2GPa, but, generally, in engineering alloys, 
defects of length less than 100|Jm are of significance only under fatigue loading. 

iii) the MICRO-scale. This is associated with microstructures designed to produce a given 
combination of flow stress, work-hardening characteristics and fracture resistance. The 
average properties (such as 0.2% proof stress) may be determined by the dimensions of 
the metal's grains, from a few (Am to more than 100|im, but the brittle particles which 
initially trigger off cleavage fracture are usually less than 10|im in size; the smallest 
size of significance is of order lOnm. 

iv) the NANO-scale. This involves events at a scale less than some 2nm: a "few" atomic 
spacings. Typical examples concern the structure of the "core" of a dislocation; the 
co-ordination of nearest or next-nearest neighbours in a grain-boundary or interfacial 
"site" for an impurity atom; or events in the region of the tip of an atomically sharp 
crack as the load applied to it increases. The question here is whether a crack 
propagates in an "atomically sharp" manner, or whether it blunts, by the emission and 
gliding-away of crack-tip dislocations. 
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Clearly, there is some overlap between these size-scales; in particular, the boundary between 
"micro" and "meso" is ill-defined for composite materials. 

The second aspect of scale is that of "scaling factor". Here, the problem is how a measured 
fracture-resistance parameter "scales" with the volume of material that is tested. It is 
important to recognise that a "scaling factor" may be confused by the presence of some 
meso-structural or micro-structural variation in the material which is not considered on the 
macro- or nano-scale. A simple assumption for material is that its density is uniform. 
Then, doubling the volume doubles the weight: quadrupling the volume quadruples the 
weight. If, however, small volumes were prepared by casting small testpieces and large 
volumes by casting large testpieces, the large pieces might contain a higher volume 
fraction of shrinkage porosity, confusing the simple scaling factor. 

If flow strength were measured, the force required to produce 0.2% plastic strain would be 
expected to increase in a linear fashion with the cross-sectional area of the piece, but this 
scaling factor could be affected by two internal variables: any increase in porosity, as 
described above, plus the possibility of generating different microstructures (with different 
flow properties) as a result of differences in cooling-rate involved with the production of the 
larger test-volume. These examples are particularly simple and relativelv-easy to analyse, 
using non-destructive testing, quantitative metallography, micro-hardness measurements, 
etc. but they serve to introduce two aspects of fabricated material which have relevance to its 
fracture and to associated "scaling-factors": i) the presence of fabrication/processing defects 
(very loosely, "meso-structure", although often overlapping into the "micro-scale"), ii) 
spatially-localised variations in micro-structure, possessing different flow and fracture 
properties (these "micro-structural" variations may extend into the meso-scale: in a multi- 
pass weld, more-or-less into the macro-scale). 

The design stress for an engineering component is conventionally taken as a material's yield 
strength or 0.2% proof strength divided by a "safety-factor". This is typically 1.5-2.0 for 
wrought steel, but 4 for cast steels under monotonic loading. The higher figure for castings 
reflects the fact that some castings may contain a higher defect content than otherwise 
equivalent wrought material, although this is by no means a general situation and it has 
been argued that design codes often discriminate unnecessarily against the use of (cheaper) 
castings in a number of applications [l]. The codes take account of meso-scale defect 
content on the basis of past experience and it is important to recognise that improvements 
in casting technology to reduce defect content can produce much better mechanical 
performance. 

Under design loads, fracture is always associated with the presence of stress concentrators and 
measurements of fracture resistance are made, either directly by observing the load required to 
break (or energy absorbed in breaking) a testpiece containing a single, long, sharp crack or a 
blunt notch, of known size, or indirectly, by determining the fracture stress for material 
which is notionally homogeneous, but which actually contains a distribution of internal 
("meso-scale") defects. Measurements of the energy absorbed in fracturing blunt-notched 
testpieces are not easy to relate to the design engineer's need for a fracture stress and will 
consequently not be discussed further in this paper. A more useful approach is based on the 
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application of finite element stress analysis to specific blunt-notch geometries, to enable the 
local fracture stress, Op, to be derived directly from the ratio of applied load, Papp, to general 
yield load, PGY [2,3]. For "homogeneous" material, it would be assumed that the same value 
of Op would be obtained in both small and large testpieces. 

Two further macro-scale measurements are the fracture stress of a testpiece containing a 
single, long crack, or the fracture stress of a notionally smooth testpiece containing 
"inherent" (meso-scale) defects. The former is associated with fracture-toughness testing and 
fracture mechanics analysis [4]. Here, given "plane-strain" and "small-scale-yielding", the 
crack-tip stress and displacement fields at fracture are characterised by a critical value of 
stress-intensity-factor, Kjc. For homogeneous material (Kic constant), "scaling-up" depends 
simply on the testpiece dimensions and compliance function Y(aAV), e.g. for a standard bend 
specimen, the fracture load Pp is given by: 

PF(B.W.a)=KICBWmY^  » 

For tougher material, fracture in a small testpiece may initiate well after general yield and 
recourse is made to the measurement of critical, post-yield parameters: crack tip opening 
displacement, CTOD (8) or J-integral, J. Here, the conditions for crack-tip dominance must 
be established rigorously. It is conventional to relate critical values of 8 or J back to 
equivalent values of K and hence to contrive to "scale" from "small" to "large" dimensions, 
but, it is, in principle, possible to compute the failure load for "intermediate" dimensions, 
using numerical techniques. 

The technique employed to treat the fracture stress of a body containing a distribution of 
inherent defects is probabilistic in nature. Conventionally, use is made of the Weibull 
distribution in which the cumulative fractional probability of failure, F(a), up to and 
including a given stress, a, is given, for a test volume, V, by: 

F(a)v  =l-cxp{-([a-a0]/as)
m}  2) 

for OG0, where CT0 is the datum or "threshold" and as is a "scale parameter" corresponding 
to the stress for which F(rj)v = 0.63. The exponent m is termed the Weibull modulus. The 
effect of the test volume is incorporated by noting that, for a constant probability of failure, 
the failure stresses aa and Oj, for test volumes Va and Vb are related through the expression. 

Va&a -0o)
m = Vb(.°b-°o)m  3) 

In principle, the macro-scale fracture stress reflects the "worst" defect configuration in the 
test volume. For a multiplicity of defects, the "worst" configuration incorporates a crack 
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size distribution, a crack orientation distribution, the possibility of partial "crack-shielding", 
and possible toughness variations in the microstructure (e.g. variable grain-boundary 
cohesive strength as a function of grain-to-grain misorientation or local chemistry). By 
paying attention to processing, it may be possible to improve the fracture stress by reducing 
the overall defect-content/size-distribution, but deterministic correlations between the two are 
not likely to be achieved. Setting the probabilistic bounds for model systems might 
be possible. The Weibull distribution is an empirical curve-fit. 

Cleavage Fracture in Steel 

This section is devoted to a discussion of how apparent conceptual discrepancies between 
Macro-scale and Nano-scale treatments of rapid crack-advance by cleavage fracture can be 
reconciled by examination of events at the Micro-scale. A typical, "valid", plane-strain 
fracture toughness value for mild steel tested at low temperature is 40 MPam1'2, at which 
temperature its yield strength is approx. 800 MPa. From the expression EG = K2 (l-i) ), 
where E is Young's modulus and 1) is Poisson's ration, the associated critical value of 
energy release-rate, G, is approx. 7kJnr2. From the expression, 8 = K2/2aYE, the 
associated CTOD is approx. 5|im, i.e. 20,000 lattice spacings. Note, however, that if the 
testpiece were loaded to 39 MPam1/2 (2.5% less than Kic), the CTOD would be only some 
5% smaller (as would be the plastic zone size). Unloading to zero would imply running- 
back of dislocations and decrease in CTOD, but it would still be 95% of approx. 15,000 
lattice spacings. Reloading to 39 MPam1/2 restores the status quo ante. If the unloaded 
specimen were supplied for testing, failure at 40 MPam1/2 would again be anticipated, and 
the original values of Gcrjt and 8crit would be deduced. 

The Nano-scale approach to fracture follows the original model proposed by Kelly, Tyson 
and Cottrell [5], and subsequently developed by Rice and co-workers [6,7]. In the model, the 
crack is envisaged as being atomically sharp and the criterion for deciding on whether or not 
it extends in a brittle manner was originally couched in terms of the competition between 
fracture of the crack tip bond at the theoretical fracture strength (of approx. E/10) or blunting 
of the crack by emission of dislocations from the crack tip at the theoretical shear strength 
(approx. ii/10). Rice's work has examined in more detail the emission and movement of 
dislocations away from the tip (at the Griffith stress, to avoid the thermodynamic 
complication of crack "healing" at lower stresses). A "saddle-point" configuration of atoms 
in the crack-tip region is identified (within two or three atomic spacings): beyond this, the 
dislocations break free and move away, to blunt the crack. The model clearly differentiates 
between "obviously brittle" materials, such as mica, which cleaves between silicate sheets, 
and "obviously ductile" materials, such as gold. Iron is found to be a "borderline" material, 
in which the balance between "fracture" and "blunting" is extremely close. 

In some senses the Nano-scale approach satisfactorily describes the observed "ductile/brittle" 
behaviour of iron and steel, but it does not conform to the experimental Macro-scale 
observations made in low-temperature fracture toughness tests. It cannot treat effects of 
plastic constraint on the ductile/brittle transition temperature; it cannot explain the variation 
of fracture toughness with different ferrite/carbide dispersions in wrought steels or with 
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different oxide/silicate inclusion sizes in weld metals. Recall that, for fast-running cleavage 
at low temperatures the Macro-scale CTOD at the fatigue-crack tip is some 20,000 atomic 
spacings, yet the Nano-scale approach would predict blunting and completely ductile 
behaviour if an atomically-sharp crack were blunted, even for a blunting of less than 10 
atomic spacings. 

The anomaly between the Macro-scale and Nano-scale conclusions can be largely reconciled 
by considering events on the Micro-scale [8]. The plastic work put in to the fracture 
toughness testpiece should be regarded as "precursor work" (c.f. the notional unloading 
and reloading experiment described above). The role of this "precursor work" is to 
generate dislocation arrays which can initiate micro-cracks in brittle second-phase particles, 
and, at the same time, create a stress/strain field ahead of the fatigue pre-crack, in which 
tensile stresses some 3-4 times the uniaxial yield stress can be generated. The critical event 
that leads to catastrophic cleavage fracture is then the propagation of the micro-crack nucleus 
under the combination of the high level of tensile stress in the plastic zone and the stress 
due to dislocation arrays. The latter is usually small (approx. 10%) compared with the 
former and the criterion for fracture is that of a critical tensile stress, Op, at the site of the 
microcrack nucleus. 

The value of <7p, is, in principle, identical to that measured in blunt-notched testpieces, but 
only if the material is quasi-homogeneous, i.e. if the critical distribution of micro-crack 
nuclei is such that equivalent sampling is experienced in the different testpieces. In the 
notched testpieces, values of Op have been found to be only weakly dependent on, if not 
independent of, temperature. Ritchie, Knott and Rice (RKR) [9] compared values of Kjc 

from fracture toughness tests with values of 0p from blunt-notched tests to deduce a "critical 
distance" Xc, at which a nucleus (in quasi-homogeneous material) would be located. In their 
mild steel, xc was about 120|J.m, equal to two grain diameters, but Curry and Knott [10] 
later demonstrated that xc did not relate directly to grain size but should be regarded as a 
statistical average of the locations of carbides above a certain size (e.g. the 90th or 95th 
percentile of the distribution). 

Further developments have followed two routes: 

i) the testing of a set of notched testpieces to determine a fracture stress distribution; 
treating this as a Weibull distribution; and combination of this with the stress 
distribution in the plastic zone ahead of the fatigue pre-crack to obtain the 
probablility of fracture at a given K-level (Bereminp l]). 

ii) the testing of blunt-notched or sharply cracked testpieces of ferritic steel weld-metals, 
combined with detailed fractography to determine values of Op at the site of the 
micro-crack nucleus [12]. Application to the Macro-scale crack-tip region is then 
pursued via the statistical distribution of the inclusion content of the material, rather 
than via a fitted Weibull distribution to the notch fracture stress. 
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Both these approaches which relate Macro-scale to Micro-scale imply some variation 
(scatter) in the values of Kic or cF and this topic will be treated with reference to scale 

effects, in the next section. 

Here, attention is paid to the link between Micro-scale and Nano-scale. The anomalies 
inherent in the direct comparison between Macro-scale and Nano-scale are obviated once the 
problem is re-focused on the propagation of the micro-crack nucleus, in the idiosyncratic 
Macro-scale stress/strain field. The nucleus is produced in a brittle, ceramic particle (carbide, 
oxide, silicate) and is likely to travel at high speed, giving very little time for any 
thermally-activated operation of (heavily-pinned) dislocation sources ahead of the 
ceramic/matrix interface [8]. The microcrack as it propagates through the ceramic 
particle could be atomically sharp, so that the Nano-scale model is appropriate to treat the 
question of whether it propagates into the matrix or whether it blunts. At higher 
temperatures in the brittle/ductile transition region many blunted microcracks are observed in 
grain-boundary carbides although inclusions in weld metals tend to cavitate. 

From measured values of op and dimensions of microcrack nuclei, it is possible to calculate 
values of the local "work of fracture", yp. This is found to be some 9-14Jm-2, approx. 4-7 
times greater than the elastic work-of-fracture, but nowhere near the Macro-scale "precursor 
work" of 7 kJnr2. An argument to support the value of 9-14 Jnr2 has been advanced in 
terms of the need to create a "mechanism" or "activated state" in the region of the 
atomically-sharp crack tip to allow the bond to separate fully [8]. At the force maximum in 
the atomic force/displacement curve, there is still an energy of interaction between the crack 
tip atoms and all the surrounding atoms have positive stiffness (an "iron cage" preventing 
separation). It is conceivable that extra (cooperative) atomic movement is needed to give 
sufficient compliance to allow full separation to occur and that this requires extra work. 
This might, for example, involve the generation and movement of crack-tip dislocations up 
to a "saddle- point" configuration , later able to run back out of the free surface when the 
crack-face is unloaded and only image-forces operate on the dislocation. The mechanism 
encompasses the following points: 

i) the necessity for "Yp" to increase as "a" increases to ensure propagation-controlled 
fracture (as evidenced by shifts in behaviour on going from torsion specimens to 
tension specimens to notched specimens). 

ii) the independence, or weak dependence, of op on test temperature. Crack-tip 
generation of dislocations would occur at stresses of order u710 and so would not be 
affected by thermal fluctuations over the temperature range of interest. It is assumed 
here that matrix dislocations are fully pinned, as in annealed material. Reducing the 
strength of pinning can increase the value of CTp. 
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Scatter In Values Of Fracture Toughness And Fracture Stress 

In quasi-homogenous material, there is no reason why values of Klc or aF should not be 
single-valued functions, since the appropriate maximum tensile stress available should 
always act on uniformly "worst" microstructure. If the probability distribution function 
(pdf) is a delta function, its integral, the cumulative distribution function (CDF) is a step 
function i.e. up to a given value Kic no specimen breaks : above Kic, all specimens have 
broken. In practice, there are random errors associated with experiments and the central limit 
theorem then predicts that the effect of the random errors is to convert the pdf to a Gaussian 
distribution [13] and hence the CDF to the error function (erf), normalised to unity. A good 
test of this postulate is to plot the CDF on normal probability paper : if a straight line is 
obtained, this indicates that the erf form is a good representation. 

The postulate is examined by plotting on normal probability paper, CDF's relating to 
results of fracture toughness tests carried out on 300M steel at room temperature (for 320°C 
and 450°C tempers) and at -196°C (320°C temper). These are shown in Fig. 1 (courtesy Dr 
J E King). Similar plots are presented in Fig. 2 for G150 and G125 maraging steels at room 
temperature (courtesy Dr B Wiltshire); for a 0.4C 0.9Mn steel (Steel A - En8) quenched to 
produce a uniform martensitic microstructure and tempered for lh at 220°C, and tested at 
-115°C; and for a dual-phase microstructure in a 0.15C 0.7Mn steel (Steel B - En3B), 
generated by holding for 1 day at 740°C and quenching, after autenitising at 910°C (courtesy 
Dr D J Neville [14]), also tested at -115°C. In all cases, a median ranking has been used, 
with the median rank of order n, Fn, derived from the close approximation [15]. 

Fn=(n- 0.3)/ (N + 0.4) 

It can be seen that for all of the fine-scale, quasi-homogenous microstructures, the erf fit is a 
good one, but that the behaviour is entirely different for the dual-phase microstructure, Steel 
B, Fig. 2. It is of interest to note that the K]c distribution for G150 steel, failing by fast 
shear at room temperature , cannot be distinguished statistically from that for steel A, 
failing by transgranular cleavage at -115°C. This points up the need to combine any 
statistical analysis of fracture results with detailed fractography and a knowledge of operative 
fracture mechanisms. Another interesting point connected with the form of presentation in 
Figs. 1 and 2 is that it provides a simple visual means to extrapolate to obtain "lower- 
bound" results. Often, these are quoted as "two standard deviations below the mean", 
equivalent to 2.28 (%) on the CDF scale, but the suggested extrapolations to 10'4 (0.01%) 
indicated by the dashed lines seem not unreasonable, given the "tight" distribution. It is, of 
course, possible to predict only from the set of available data points, unless a physical 
model is available to justify a genuine lower bound. 
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Quasi-Homogeneous   Microstructures 

Examine first the results for the quenched-and-lightly-tempered (220°C) En8 (steel A, Fig 2) 
tested at -115°C and for 300M tempered at 320°C and tested at - 196°C. Both steels contain 
approx. 0.4C and possess similar microstructures in which plate-like carbide some 0.2- 
0.4|0.m thick is located at lath boundaries, where individual laths are of the order of ljim 
thick. The CDF plots suggest that random errors are of order ±2% or less and this is in 
agreement with Neville's assessment of ±1.6% for the Steel A tests. Values of Op for 
similar steels have been estimated as some 3150-4400 MPa, which, given the high yield 
stress, implies values of (amax/(JY) of order 2.5-3.0. 

If ±2% is allowed on the value of (amax/(7Y) at a nominal value of 3.0, i.e. 3.06 to 2.94, 
the corresponding spread in distance AX, is 0.003 (Kic/CTY)2. For Kjc = 30 Mpam1/2 and 
CTy = 1500 MPa as typical figures, AX is only some 1.3(xm. For these steels, the critical 
test volume is of order B(AX)2. The reproducibility of results is obtained because the 
microstructure is so fine and many units, ready to fracture at virtually identical loads, are to 
be found along the thickness of the testpiece. Bowen [16] has demonstrated clearly, in lower 
(0.15-0.2) carbon A533B steel that the microstructural factor controlling cleavage toughness 
in as-quenched (auto-tempered) martensites is inter-lath carbide thickness. More latitude on 
the value of (C7max/OY) implies the expectation of greater random errors in a fracture 
toughness test, but this is coupled with the ability of coarser microstructures to demonstrate 
"homogeneous" behaviour (within the less demanding constraints associated with greater 
random errors). 

Similar principles hold for the ductile, "fast-shear" fractures associated with G150 and G125 
maraging steels (Fig.2) and with 300M fractured at room temperature (Fig.l). These steels 
are ultra-clean from the point of view of non-metallic inclusions and "fast-shear" is 
associated with local decohesion of tempered carbides (or intermetallics) which are again very 
small particles, spaced closely. This contributes to a critical CTOD, rather than to Kjc as 
such, but the opening displacements associated with fracture are so small that the shear 
fracture, in mode I, produces catastrophic failure under quasi-elastic conditions. The 
importance of critical shear strain is, however, emphasised by the "zig-zag" fracture path and 
by behaviour under Mixed Mode (I/TI) loading [17]. Within the limits of experiment, it is 
found that these fine microstructures behave in a quasi-homogeneous manner. 
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'Dual-Phase"  Microstructure 

The behaviour of Steel B (Fig.2) is quite different from that of the other steels having fine- 
scale microstructures. The fracture toughness values are widely spread, from 67.0 MPam1/2 

to 93.1 MPam1/2 and there is a suggestion that points a, b, c and d constitute a separate 
distribution. Steel B has a deliberately-induced, "fine-scale" dual phase microstructure, with 
68% ferrite, martensite "islands" of size 8(im and ferrite mean free path of 17(im. The "unit 
size" is therefore of order 8 + 17 = 25|im. For a value of Kic averaged at approx. 75 
MPam1/2 and the yield stress, taken as 600 MPa at -115°C, the "range", AX, taken as 0.003 
(K/ay)2 is 50|im so that approx. 4 "units" are encompassed in 2-D. Inhomogeneities in 
distribution of units, may, however, act to increase the scatter (see later). 

Neville [14] carried out similar tests using V-notched bend tests, having a notch-root radius 
of 250|im. The dual-phase microstructures were produced in two size-scales: "fine-scale" 
(73% ferrite, "island" size 6|im, ferrite mean-free-path 17|J,m, "unit" size 6 + 17 = 23|0.m) 
and coarse-scale (72% ferrite, "island" size 57|J,m, ferrite mean-free-path 128|im, "unit" size 
= 51 + 128 = 179fim). Specimens were fractured and values of op were deduced, using the 
Griffiths and Owen [2] analysis. Four "fine-scale" specimens gave values of aF of 1534, 
1540, 1544 and 1544 MPa i.e. 1541 ± 0.3% MPa. Seven "coarse-scale" specimens gave 
values for OF of 1470, 1483, 1497, 1503, 1510, 1528 and 1579 MPa, giving an average of 
1510 MPa, but a range of 109 MPa, ±3.6% of the mean. 

The "fine-scale" specimens failed close to general yield, where the "range", AX 
corresponding to 0.98amax is approx. one root radius (p) = 250^m. The "coarse-scale" 
specimens failed at a lower fraction of general yield, such that the "range" AX might be as 
low as p/2 = 125|J.m. From these results, it is clear that the fine-scale microstructure 
("unit" size 23p.m) exhibits quasi-homogeneous behaviour in a blunt (250|0m)-notched 
specimen, having a (linear) "range" (at the 0.98 level) of 250|am, but demonstrates scatter in 
sharp-cracked tests, of range 50|im. The coarse-scale microstructure ("unit" size 179(J.m) 
exhibits scatter in a blunt-notched testpiece, having (linear) range 125-200|im. Experiments 
such as these help to define the conditions for quasi-homogeneous behaviour, by relating 
microstructural size-scales to the extent of a high-stress region ahead of a stress-concentrator. 

Another important factor in a dual-phase microstructure relates to inhomogeneities in the 
"meso-scale" distribution of the two microstructures and their location with respect to the 
tip of the macro-scale crack. Hagiwara and Knott [18] heat-treated HY80 steel specimens to 
produce different volume fractions of ("brittle") upper-bainite in bainite/martensite 
microstructures. The Klc values at -142°C were observed to fall between two limits, 
corresponding to an upper limit for "100% martensite" (crp = 3125 MPa, cleavage facet size 
lOjam) of 57 ± 5 MPam1/2 and a lower limit for "100% bainite" (CTF = 2800 MPa, facet size 
38|im) which was 42+5 MPam1/2. At 40% bainite, the scatter was increased, two 
individual values of 44.7 MPam1/2 and 56.0 MPam1/2 being obtained (in a small set). The 
(central) value of critical distance, Xc, was calculated as 62|a.m for martensite and 46jam for 
upper bainite. For a + 10% variation in (cmax/aY) the "range" for this steel at Klc ~ 50 
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MPam1/2 is approx. 40|im, so that even the coarser facets stand a reasonable chance of being 
"properly" sampled and this is reflected in similar scatter for both "100%" microstructures. 
For the 40% bainite microstructure, it was observed that the fracture surface at Xc = 46}im 
(Kic = 44.7 MPam1/2) was composed primarily of 38um "bainite-sized" facets; whereas that 
at Xc = 62^m (Klc = 56.0 MParn172) corresponded to almost completely 10(im "martensite- 
sized" facets. It is clear that the scatter is increased, because the lower bound corresponds to 
"bainite" at the critical distance: the upper to "martensite" at this position. 

Studies of this sort have been recently pursued by X Zhang [19]. The steel used is A508 
pressure-vessel steel and early experiments have been made on a "100% bainite" 
microstructure and a mixed "bainite/martensite" microstructure. Ten values of Kic for each 
condition at a test temperature of -80°C have been determined and use has been made of plots 
on probability paper to examine the CDF for each microstructure. The results are plotted in 
Fig.3, which is highly instructive. First, the "100% bainite" results appear to confirm quite 
well to a Gaussian distribution and an extrapolation to 10"4 probability, giving a Klc (min) 
value of 23 MPam1/2 seems plausible. Two specimens exhibited "pop-ins", but they 
occurred at values of K of 27.5 MPam1/2 and 29 MPam1/2, both significantly higher 
than 23 MPam1/2. 

The results for the mixed microstructure are of particular interest. It is tempting to treat 
them as a single distribution and to plot the results on Weibull probability paper. This has 
been done in Fig.4 on the "two-parameter" basis, i.e. taking any "threshold" Kic value as 
zero. Neville and Knott [14] have proposed a methodology to determine "threshold" values, 
by choosing appropriate trial values and examining "goodness of fit" to a straight line on 
Weibull probability paper, as decided, e.g. by "least-squares" regression analysis. The fit in 
Fig.4 is, however, already quite good and an examination of the points on normal 
probability paper (Fig.3) suggests that the data set of Klc values for mixed microstructures 
would extrapolate back to a very low threshold; perhaps to zero (or even to negative 
values!); apparently to a value lower than 23 MParn172, the 10"4 limit deduced for the more 
brittle (bainite) phase in the mixed microstructure. This is a result of the wider scatter for 
the mixed microstructure fracture toughness values , echoing the findings of Hagiawara in 
HY80 [18]. Zhang has not yet carried out detailed fractography, but it is expected that 
similar results will be obtained with respect to the "line fractions" of bainite and martensite 
at X0 ahead of the crack tip. An important point is the critical "line fraction" of bainite 
required to produce catastrophic failure at a Kic value corresponding to that for "uniform" 

bainite. 

It is extremely important that a physical understanding of the micro-mechanisms of fracture 
be combined with statistical analysis, particularly for materials which have a meso (perhaps 
micro, or near-macro) distribution of two or more components with different fracture 
toughness properties. From Fig.3, it can be seen that a naive extrapolation of the CDF for 
the mixed microstructure could load to a lower-bound ("threshold") value which was lower 
than the lower-bound toughness of the more brittle constituent.   This is physically not 
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sensible. Although the Weibull analysis can produce a reasonable straight line, (Fig.4) any 
such analysis should be combined with forensic fractography to ensure that physical reality 
is maintained. It is of interest, in Fig.3, to note that two "pop-in" values for mixed 
microstructures fall within the data-set limits for the "uniform" bainite component. 

Similarly, the points a, b, c and d in Fig.2 may well represent an individual set for the more 
brittle ferrite phase, although detailed fractography was not carried out to confirm this point. 

Weld  Deposits 

Principles similar to those described above for wrought materials may be applied to weld 
metals, although the fracture initiation sites are now usually non-metallic inclusions: 
oxides or silicates, usually formed as a result of deoxidation processes in the weld pool [12]. 
These are usually small particles, at a few percent volume fraction, with distributions such 
that the 95th percentile is some 2u\m. In his definitive work, Tweed [12] observed that 
some fractures were initiated from significantly larger particles (up to \3\im in size). These 
had unusual chemistry (containing Ca, K) and appeared to result from some of the binder, 
used to bind the coating to the electrode, breaking off and falling into the weld pool. These 
large particles were associated with lower values of fracture toughness: "outliers" from the 
(deoxidation product) "normal" distribution. 

The fracture toughness distributions for weld metals can be examined using the CDF on 
normal probability paper. As for wrought material, a straight line may be expected if the 
material is quasi-homogeneous, i.e. if the sample volume is sufficient to sample something 
of the order of the 96th percentile, equivalent to 2% variation on oF (since ap depends 
on a ""2. Initial results are promising, but more data is needed to establish baselines. 
Variations in inclusion size (e.g. "outliers") should show as a break in the distribution 
(perhaps "pop-ins" will be observed) and analysis can the be combined with forensic 
fractography to seek the causes for these discontinuities. 

Results in multipass weldments may be further confused by meso/near-macro variations in 
microstructure: "coarse", "as-deposited" grains and "fine", "reheated" grains. Tweed [20] has 
demonstrated that these changes in microstructure have a profound effect on fracture 
toughness, over and above the role of inclusions. The basic analysis with respect to 
inclusions is most easily carried out in a uniform microstructure and this may be important 
with respect to the quality control of the welding process. Assessment of the toughness of 
the multipass weld requires an approach similar to that described for mixed 
bainite/martensite microstructures, particularly if extrapolation to low probability is 
involved. Fractography must be employed to examine the micro-mechanisms of fracture, to 
ensure that physical sense is applied to extrapolation: a narrow scatter-band, relating to the 
more brittle component may give a higher "lower-bound" than the wider scatter associated 
with the "composite" weldment. 
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The scale of the "meso" distribution (a few mm per "band") is such that behaviour in 
notched-bar tests (a Charpy V-notch of 0.25mm root radius) is unlikely to differ from that 
in sharp-crack tests. It is salutary to recall the results of Newman, Benois and Hibbert [21], 
who demonstrated a strongly bimodal distribution for Charpy energy, over a range of some 
60°C. 

Concluding   Remarks 

The paper has referred to four (overlapping) scales of structure: macro, meso, micro and 
nano. It has also paid some attention to scaling factors. An argument has been put forward 
that anomalies between experimental macro-scale values of fracture toughness in steels and 
the predictions of nano-scale fracture theory can be resolved by considering events at the 
micro-scale. This focuses attention on the features of heat-treated microstructure. 

Scaling factors are associated either with pieces containing a single, long dominant crack, in 
which case the concepts of fracture mechanics are deemed to hold, even going from post- 
yield to small-scale yielding, or with an array of "meso"-scale defects, in which case fracture 
stress distributions are analysed and size effects are related to sample volume (often not 
strongly backed by fractography). With macro-scale fracture toughness values being 
controlled by microstructural distributions in a critical "process zone" ahead of a macro 
crack-tip, it is of interest to explore the methodologies that should be employed to explain 
the distributions of fracture toughness. 

Starting from first principles, a postulate is made that Kic values should initially be 
considered as single-valued "delta-functions" if the material is "quasi-homogeneous", by 
which it is meant that the fracture "unit-size" is so small in comparison with the process 
zone that the "worst" unit is sampled in every testpiece. The "next-worst" units will 
fracture at minimally higher applied fracture load than does the "worst" unit, so that an 
"avalanche" leads to catastrophe at notionally the same Kic value. The central limit 
theorem shows that random errors superimposed on the delta function produce a Gaussian 
distribution. The CDF (an erf) then plots as a straight line on normal probability paper and 
such plots have been made, using experimental results, to test the validity of the original 
postulate. This seems to be well validated for fine-scale microstructures and the plausibility 
of extrapolation to low probability (10~4) can be assessed in a simple visual manner. This 
"lower bound" or "threshold" can be used in any scaling based on fracture mechanics. 

In two-phase microstructures, the CDF is much more widely distributed (Figs.2, 3). It is 
possible to "straighten up" such a distribution of "macro" fracture toughness using Weibull 
analysis (Fig.4) but this ignores some of the essential micro-scale input, which requires 
fractography. From detailed examination of mixed bainite/martensite results, there is a 
danger that extrapolation of "mixed" results could give a "lower-bound" lower than the 
"lower-bound" of the more brittle phase. Similar concerns exist for the meso/near-macro 
distributions of "coarse" and "fine" microstructures in a multipass weld. It is strongly 
advised that in these cases the "lower-bound" be based on that of the more brittle phase. 
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Notched-bar testpieces will usually give more tightly-distributed fracture loads than those 
associated with pre-cracked testpieces, but the crucial factor is the relative sizes of the 
"sample volume" subjected to high stress (say, 98% or 95% of <Tmax) and the microstructural 
"fracture unit". 
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CLOSING IN ON THE CRACK TIP 

JOHN W. HUTCHINSON 
Division of Applied Sciences 
Harvard University, Cambridge, MA 02138 

1.  Introduction 

This paper addresses some of the issues involved in predicting fracture toughness 
of structural metals by linking the fracture process occurring at the crack tip 
through the plastic zone to the outer elastic field of a macroscopic crack. The 
link is extremely nonlinear giving rise to a macroscopic toughness which can be 
magnified many times the intrinsic work of the fracture process. The two 
principal fracture mechanisms considered are cleavage and void nucleation, 
growth and coalescence. 

Almost everyone starting out to learn fracture mechanics asks the question, 
"How is it possible to predict fracture using elasticity theory?". The answer, of 
course, is that it is not possible. The critical value of crack tip intensity for a 
given material, called the fracture toughness, is determined by experiment. 
Nevertheless, going back to the first beginnings of fracture mechanics, attempts 
have been made to predict fracture toughness by connecting the response of a 
structural component or specimen containing a macroscopic crack all the way 
down to the crack tip where the microscopic fracture processes take place. The 
Dugdale-Barenblatt model was interpreted by Barenblatt (1962) to represent a 
crack in ideally elastic and brittle solid connecting the remote field with the 
atomic separation process along the crack line at the tip. When dislocations are 
not generated at the crack tip nor induced to move in the region surrounding the 
tip, the macroscopic toughness, Tic, for crack growth initiation approaches the 
atomistic work of separation. Sophisticated techniques for computing the 
atomistic work of separation based on quantum mechanics have recently been 
developed. A crude estimate for the atomistic work of separation is the 
theoretical lattice strength times a displacement proportional to the lattice 
spacing, i.e. roughly (EA30)b, where E is Young's modulus and b is the lattice 
spacing. For most metals and ceramics this is on the order of 1 to 5 J m"2 (see 
Table 1). Thus, a rough estimate for the fracture toughness of an ideally brittle 
material is 

rIc~Eb/30 (1) 

Extrinsic factors, such as crack deflection and crack bridging by interlocking 
grains in polycrystals, can magnify Tic above the atomistic work of separation, 
but such effects are relatively small compared to magnification resulting from 
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plastic deformation at the crack tip. 
There is considerable interest and effort underway to compute fundamental 

quantities such as the work of separation for atomic lattices and interfaces from 
first principle atomistic physics. This effort brings together segments of the 
mechanics and physics communities with the common goal of bridging the gap 
between the fracture events at the atomic scale and macroscopic fracture 
properties. Except perhaps for ideally brittle materials, the gap is not likely to be 
easily bridged. For most structural metals and metal/ceramic interfaces of 
interest, a plastic zone separates the crack tip and the outer elastic regions of the 
solid. As suggested in Table 1, the plastic zone can act as a huge multiplier 
leading to a macroscopic work of fracture which is larger than the atomic work of 
separation by factors of tens or even hundreds. The importance of plastic 
deformation in enhancing toughness was recognized years ago by the pioneers in 
fracture mechanics, such as Irwin and Orowan, shortly after the first fracture 
toughness measurements were made. Only recently, however, have efforts been 
made to quantify the connection between macroscopic toughness, plasticity and 
the local' work of the fracture process To. Some of the recent work on this 
problem will be mentioned here. An important distinction arises between a 
material whose fracture process is controlled at scales which are on the order of 
microns (see Table 1) and failure of a material or interface controlled at atomic 
scales. Examples of the former will be discussed first. 

TABLE 1.  Fracture Process, Macroscopic Initiation Toughness He. and Controlling 
Microstructural Scale 

Fracture Process rj.c(Jnr2) 10"3m   10"6m   10-9m 

Cleavage of highly brittle 1-5 b 
metals, ceramics and glasses by 
atomic separation (no plasticity) 

Cleavage crystals and interfaces       10-100 b 
between metals and ceramics by 
atomic separation (some plasticity) 

Cleavage of structural steels lO^-lO4 D    S 

Void nucleation, growth and 10-MO5 D    S 
coalescence in structural metals 

(b=atomic lattice spacing, D=particle spacing and S=particle size) 

2.  Models of Fracture Initiation Toughness in Structural Metals 

More than twenty years ago, models were proposed to predict initiation 
toughness for ductile structural metals for the two most important fracture 
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process mechanisms, cleavage and void nucleation, -growth and coalescence. A 
critical aspect of both of these processes in structural metals is the essential role 
of small second phase paniculate components, such as brittle carbides in steel or 
oxide particles in aluminum, either in triggering cleavage or in nucleating voids. 
The particles are typically on the order of a micron in size and spaced apart by 
distances on the order of tens to hundreds of microns (cf. Table 1). These are the 
controlling scales for the fracture process in these materials. The problem of 
predicting the toughness of such materials does not require the mechanics 
analysis to bridge all the way to the atomistic scale. Of course, fundamental 
properties at the atomic scale influence the macroscopic properties, but their 
influence on the nucleation of micro-cracks or voids can be determined from 
analyses which decouple from the fracture toughness models, as will be made 
clearer below. We begin with a brief discussion of the outcome of two early 
models of this class. 

The critical event in the cleavage of structural steels is the initiation of a 
dynamic micro-crack in a brittle carbide near the macroscopic crack tip. Under 
favorable conditions, this crack spreads from the particle, serving as the nucleus 
of the running cleavage crack. From then on, the crack is able to "outrun" most 
of the plasticity thereby avoiding crack blunting which would lead to arrest. For 
structural metals capable of cleaving, Ritchie, Knott and Rice (1973) assumed 
that initiation and spread of cracking beyond the brittle particle requires 
attainment of a critical stress Of. This is taken to be the same critical stress 
identified in notched bar tests in the earlier work. Ritchie et al. postulated that 
the stress ahead of the macroscopic crack must attain the critical stress level over 
distances which are comparable to the spacing D of the brittle particles. Using a 
plane strain, elastic-plastic analysis for the stress distribution ahead of a crack tip, 
these authors argued that as long as of is less than between 3 to 5 times the yield 
stress, ay, depending on the strain hardening level, the stress ahead of the crack 
will exceed the critical stress. The postulated condition will be met when the 
mode I stress intensity factor reaches 

KIC~CCJYVD (2) 

Here, c is a numerical constant approximately equal to 3 but depending 
somewhat on strain hardening. In terms of the energetic measure of toughness, 
r=(l-v2)K2/E, where v is Poisson's ratio, this estimate becomes 

ric~c2((JY
2/E)D (3) 

The range of values of listed in Table 1 are representative of values predicted by 
(3) for steels in the temperature range in which they are cleavable. If Of exceeds 
3 to 5 times oy the critical events cannot occur, according to this criterion, and 
cleavage cannot be initiated. The model regards of as a parameter to be 
determined experimentally with either a cracked specimen or a notched 
specimen. Attempts to relate this critical stress to more fundamental material 
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parameters have not been successful. The value of the model, to the extent it is 
valid, is that it decouples the determination of of from the fracture toughness 
model. 

When the controlling mechanism is void nucleation, growth and coalescence, 
Rice and Johnson (1970) considered the interaction of a nucleated void a distance 
D ahead of the unloaded crack tip. A simplified version of their analysis is as 
follows. The criterion for initiation of macroscopic crack growth states that 
initiation occurs when the void links up with the tip. In turn, this requires that the 
crack tip opening displacement 8-0.5 K2

/(EOY), be equal to about one average 
void spacing D. The resulting initiation toughness is 

ric ~ 2GYD (4) 

There is a dependence on the size S of the void-nucleating particles, or 
equivalently on the volume fraction of the particles, but this dependence is weak 
as long as S/D is small. Detailed finite strain computations for the interaction of 
a void with a crack tip have corroborated this simple relation (McMeeking 1977). 
Representative values from this equation are also included in Table 1 and are 
seen to be extremely large relative to typical values of the atomistic work of 
separation. The significance of a brittle to ductile transition in mechanism, from 
cleavage in (3) to void coalescence in (4), is evident because of the relative factor 
ay/E. The initiation toughness can be even larger than (4) if nucleation of the 
voids from the second phase particles becomes the controlling step in the fracture 
process. As in the case of the other mechanism, atomistic considerations will 
come into the picture through considerations such as the strength of the interface 
bonding the void-nucleating particles to the metal matrix but not at the scale of 
the particle spacing which controls this fracture process. 

3.  Toughness Enhancement due to Plasticity in Small Scale Yielding 

Small scale yielding pertains when the crack length and other in-plane length 
quantities are long compared to the size of the plastic zone at fracture. Under 
these circumstances the applied load experienced by the crack tip is specified by 
K or, equivalently, by T. Metals with some ductility nearly always display an 
increasing resistance to crack growth under plane strain conditions in the form of 
a crack growth resistance curve, T versus crack advance Aa, as sketched in Fig. 1. 
Following initiation of growth at Tic, the resistance curve rises, approaching an 
asymptote rss, corresponding to growth under steady-state conditions. 
Typically, the amount of growth needed to attain steady-state is several times the 
size of the plastic zone at that level of loading. 
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Figure 1.  Typical crack growth resistance behavior when plastic flow occurs. 

A study of the role of plasticity in enhancing crack growth resistance was 
carried out by Tvergaard and Hutchinson (1992). These authors analyzed a 
model which embeds a traction-separation law within an elastic-plastic 
continuum. The traction-separation law is considered to characterize the fracture 
process. The two primary parameters specifying this separation law are its peak 
stress, G, and the area under the curve, which is the work of separation per unit 
area, To. The material parameters characterizing the elastic-plastic continuum 
are its Young's modulus, Poisson's ratio, yield stress ay, and strain hardening 
exponent N. The conventional flow (incremental) theory of plasticity is assumed 
to describe the metal with the Mises invariant employed to model isotropic 
hardening. Prior to the initiation of crack growth, the J-integral can be used to 
connect the remote field, whose amplitude is K or T=(1-V2)K2/E, to the 
separation zone at the tip. This procedure shows that the crack faces at the tip 
reduce to zero traction, corresponding to the initiation of crack advance, when T 
attains FQ. Thus the model says that the initiation toughness is the work of the 
fracture process: 

r"ic - r0 (5) 

Resistance behavior following initiation requires extensive numerical 
calculation, which was performed using finite element methods. From 
dimensional analysis, one can see that the steady-state toughness must depend on 
the parameters of the separation law and the elastic-plastic material according to 

rss - Tn F 
{GY 

-,N (6) 
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The numerical calculations reveal a weak dependence on other details of the 
shape of the separation law and on ay/E and v. The multiplicative influence of 
plasticity on the crack growth resistance is reflected in the appearance of the 
factor F in (6). Computed dependence of F for plane strain crack growth is 
shown in Fig. 2 for three values of the strain hardening exponent. For C less 
than about 2.5 oy, there is little crack growth resistance, i.e. rss =Tic =To, and 
almost no enhancement of toughness due to plastic deformation taking place in 
the plastic zone. (Of course, for a fracture process such as void growth and 
coalescence, plastic dissipation is an integral part of the work, To, of the process 

itself.) For peak stresses satisfying c>2.5 oy, depending somewhat on strain 
hardening, the enhancement of steady-state toughness due to plasticity can be 
appreciable. Multiplicative factors above 20 to 25 are difficult to compute with 
the model but, nevertheless, are clearly possible. 

r 

;— d/Oy 

Figure 2. Ratio of steady-state toughness to the work of the fracture process for plane 
strain crack growth with oy/E=0.003 and v=0.3. Accurate plots are given in Tvergaard 
and Hutchinson (1992) 

Implications of these results as applied to structural metals failing by the void 
coalescence mechanism are discussed in the next section. Their implication for 
metals and metal/ceramic interfaces whose fracture process is controlled at the 
atomic level by cleavage will be taken up in Section 5. 

4.  Crack Growth Resistance for Void Growth and Coalescence 

To make contact with the results for the model discussed in the previous section, 
we note that the work of separation for a planar band of localized deformation 
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containing voids is approximately 

1 r0=-aYD (7) 

with some dependence on the strain hardening index N but little dependence on 
the initial void volume fraction fo~ (S/D)3, as seen in Fig. 3b. The peak stress, 
a, attained in the separation of the localized band is sensitive to both N and fo 
(Fig. 3a). Use of the results in Fig. 3 for the fracture process together with the 
model predictions (5) and (6), enables one to predict both the initiation and 
steady-state toughnesses as a function of the four parameters of the material 
which primarily influence toughness, cry. N, D and ffj. A fifth parameter, a void 
nucleation stress or strain, must be considered if the particles are especially well 
bonded to the metal matrix. 

a) 

r0   l 

.02   f      .03 

b) 

N-0 

.01 .02    r     .03 

Figure 3. Trends in peak stress and work of fracture for separation of a localized band 
undergoing void growth and coalescence with OY//E=0.003 and v=0.3. Accurate plots are 
given in Tvergaard and Hutchinson (1992) 

By (5) and (6), the initiation toughness predicted by this model is 

r, =rn=-aYD Ic (8) 

which can be seen to be only one fourth of the value predicted by the Rice- 
Johnson model in (4). The assumption leading to (4) is that the fracture process 
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is controlled by the interaction of a single void with the crack tip, while the 
implicit assumption leading to (7) and thus to (8) is that the fracture process zone 
extends ahead of the tip by at least several void spacings. The computations of 
Tvergaard and Hutchinson reveal that there are indeed two regimes: one where 
the length of the process zone is large compared to D when (8) is valid, and a 
second in accord with the Rice-Johnson model (4) wherein the fracture process 
zone is largely confined to the nearest void to the tip.  The transition to this 
second regime occurs when C/ay becomes sufficiently large, or, equivalently, 
for example, when fo becomes sufficiently small (cf. Fig. 3a). 

Recently a number of groups have developed computational models for crack 
growth in structural metals which are governed by the mechanism of void 
nucleation, growth and coalescence. Representative work is contained in the 
following publications: Needleman and Tvergaard (1987), Rousselier, Devaux, 
Mottet and Devesa (1989), Brocks, Klingbeil, Kunecke and Sun (1994), Bilby, 
Howard and Li (1993), and Xia, Shih and Hutchinson (1994). All these models 
use material elements ahead of the crack which contain voids and which 
approximately replicate the nucleation, growth and coalescence under the local 
conditions of stress and strain. Damage parameters such as the size and spacing 
of the void-nucleating particles are usually chosen such that the model 
reproduces a selected set of crack growth data but, in principle, they could be 
chosen to fit the microstructural quantities themselves. Once calibrated, the 
models can be used to predict crack growth and stability, together with load- 
deflection histories, under a wide variety of conditions. The strong size and 
geometry dependence of crack growth behavior under large scale yielding, which 
is associated with differing triaxial stress conditions near the tip, is accurately 
captured by these models. Thus, for the important class of structural metals 
failing by the void mechanism, a computational method is now more or less in 
place which can be used to predict the response of cracked structures and 
components. The models are first principles models in the sense that they bridge 
to the scale which controls the fracture process. More fundamental 
understanding at even smaller scales of the connection between the damage 
parameters to the features of the microstructural and the chemical make up of the 
material can be obtained from studies which uncouple from the crack problem. 

5.  Crack Growth Resistance for Atomic Cleavage 

While it has been possible to bridge through the plastic zone to the fracture 
process zone for the void mechanism, the same cannot be said when the fracture 
process mechanism is atomic separation for reasons which will now be discussed. 
At first sight, the model of Tvergaard and Hutchinson discussed in Section 3 
would seem to be applicable to this problem, if one identified the traction- 
separation law with that for atomic separation. One obvious possible objection is 
that it is most unlikely that conventional continuum plasticity theory is applicable 
at the scales below about 1 micron, which necessarily come into play in bridging 
to the atomic scale. There is an increasing body of experimental evidence that a 
strong size effect exists for plastic deformation at length scales below about 1 
micron, with significantly increased rates of strain hardening at the smaller 
scales.   Conventional continuum plasticity theory does not incorporate size- 
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dependent hardening effects. Moreover, all solutions for crack tip stress 
distributions obtained from conventional elastic-plastic continuum theory predict 
that the maximum stress that can be achieved ahead of the crack tip is only about 
3 to 5 times the initial yield stress of the solid, depending on the strain hardening 
exponent N. Such stress levels are well below the values needed to produce 
atomic separation in most metals. In particular, this is true for the model 
discussed in Section 3, as is evident from the steady-state toughness trends in Fig. 
2. If one were to take the predictions of the conventional plasticity models at 
face value, one would conclude that plasticity eliminates the possibility of atomic 
cleavage as a mechanism of fracture. 

Logio 
\roj 

-3 -2 -1 
f 

LoglO 
Do *\ 

lEToJ 

Figure 4. Trends in the ratio of steady-state toughness to the work of crack tip separation 
(<TY/E=0.003 and v=l/3). Accurate plots are given in Suo, Shih and Varias (1993) 

The thrust of the above discussion is that one must turn to theories of 
plasticity which incorporate more realistic hardening descriptions, or, possibly, to 
dislocation modeling at the smallest scales, if there is to be any hope of bridging 
to atomic separation. Strain gradient theories of plasticity are currently under 
development which incorporate scale-dependent strain hardening. Whether these 
will bridge to the crack tip remains to be seen. In lieu of a more realistic way of 
dealing with small scale plasticity, Suo, Shih and Varias (1993) proposed a model 
which is capable of generating the large stress values necessary at the tip to 
achieve atomic cleavage. They restricted consideration to metals which emit no 
dislocations from the crack tip, and they postulated the existence of a dislocation- 
free elastic strip zone along the projected crack line, as sketched in the insert of 
Fig. 4. The half-height of this zone is taken to be D and is imagined to have a 
dimension which is small compared to a micron corresponding, at least 
qualitatively, to the smallest average spacing between dislocations. Outside the 
elastic strip, the authors used conventional elastic-plastic continuum theory to 
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represent the constitutive behavior. The existence of the elastic strip between the 
outer plastic zone and the tip permits the stresses in the model to rise to the high 
levels needed to bring about atomic cleavage. For a small scale yielding 
formulation, Suo et al. computed the steady-state relation between the remote 
loading, as measured by the steady-state toughness rss, and the energy release 
rate at the crack tip in the elastic strip, which is set to be equal to the atomic work 
of separation To. The resulting relation is plotted in dimensionless form in Fig. 
4. Macroscopic steady-state toughnesses in excess of 10 to 100 times the 

atomistic work of fracture are clearly implied when the parameter Day /(Er0) 
is sufficiently small. Evidence for such a large multiplicative influence of 
plasticity on toughness has recently been presented for cleavage of several 
metal/ceramic interfaces, including a gold/sapphire interface (Reimanis, 
Dalgleish and Evans, 1991). 
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RELATIONS BETWEEN CRACK GROWTH RESISTANCE AND 
FRACTURE PROCESS PARAMETERS UNDER LARGE SCALE 
YIELDING 

VIGGO TVERGAARD 
Department of Solid Mechanics 
Technical University of Denmark, Lyngby, Denmark 

Abstract. Mode I crack growth under large scale yielding conditions is studied 
by comparing numerical plane strain analyses for four different test specimen 
geometries. The fracture process is represented in terms of a cohesive zone 
model, for which the separation work per unit area and the peak stress required 
for separation are basic parameters; but where also a plastic strain effect on the 
fracture process is incorporated. The differences between crack growth resis- 
tance curves predicted for different specimen geometries are in general agree- 
ment with the different T-stress levels obtained for different specimens. In 
addition, a specimen size dependence of the crack growth resistance curves is 
illustrated. 

1.  Introduction 

Plastic dissipation in the material around a crack tip adds significantly to the 
fracture toughness, so that the value of the stress intensity factor needed to 
advance a crack can be much larger than that corresponding to the work of 
fracture per unit area of crack surface. Computations of Tvergaard and Hutchin- 
son (1992, 1994) for mode I plane strain crack growth under small scale yield- 
ing conditions have been used to study this dependence, with the fracture pro- 
cess represented in terms of a traction-separation law in which the primary 
parameters are the work of separation per unit area, T0, and the peak traction, 
o. These studies show that the plasticity induced increase of the fracture tough- 
ness depends mainly on the peak traction to initial yield stress ratio, a/aY , and 
the strain hardening exponent,  N . 

With the cohesive zone model employed by Tvergaard and Hutchinson 
(1992, 1994) the fracture process is entirely stress dependent. But e.g. for an 
elastic-plastic solid the maximum stress achieved ahead of a crack-tip is 
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2.91 aY , so here the model predicts only crack blunting with no crack advance, 
if a exceeds 2.97 aY • Similar behaviour is found for strain hardening materi- 
als, at somewhat higher values of the limiting stress. But in the case of metals 
failing by the mechanism of void nucleation, growth and coalescence there is 
also an effect of intense plastic straining in the near vicinity of the crack tip, 
which accelerates the void growth process and the nucleation of more voids. To 
incorporate such plastic strain influence Tvergaard and Hutchinson (1995) have 
used a modified traction-separation law, in which the peak separation stress o 
is reduced continuously as a function of local plastic strain for strains above a 
critical value ec (see also Tvergaard, 1992). The computations of Tvergaard 
and Hutchinson (1995) for conditions of small scale yielding have shown that 
the modified model allows for a better representation of very tough materials 
with a high value of the tearing modulus defined by Paris etal. (1979). It is 
noted that this modified model displays some mesh dependence, since the plas- 
tic strain predicted near the tip is sensitive to the element size along the line of 
the crack. 

Predictions of crack advance by a void coalescence mechanism can be 
directly based on the porous ductile material model of Gurson (1977), as has 
been applied by e.g. Needleman and Tvergaard (1987, 1991), Rousselier (1987), 
Sun etal. (1992), Brocks etal. (1994) and Xia etal. (1995). In such finite ele- 
ment models the mesh must capture the interaction between the crack tip and 
the nearest voids, and many of the models have taken the element size to be on 
the order of the void spacing. As such, these models also display mesh depen- 
dence. 

In the present paper, the modified traction-separation law, with a plastic 
strain dependence of the peak stress, is used to analyse crack growth under large 
scale yielding conditions. For a given set of parameters describing the fracture 
process results corresponding to four different specimen geometries are 
compared. Also the specimen size dependence of the crack growth resistance 
curve is studied, including specimen sizes large enough to give fully contained 
plastic yielding. 

2.   Problem Formulation and Numerical Method 

Each of the four different specimen geometries considered here are analysed by 
numerical solutions for the region shown in Fig. la, with appropriate symmetry 
boundary conditions or load boundary conditions specified at the different 
edges. Here, A0 denotes the initial crack length. For a double edge-notched 
tension strip (DENT) the full specimen covers the region - H0 < x2 < H0 , 
0 < Xj < 2W0, and uniform tensile stresses are applied at the ends. For a 
single edge-notched tension strip (SENT) or a single edge-notched bent strip 
(SENB) the full specimen covers the region - H0 < x2 < H0 , 0 < %x :£ W0, 
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Fig. 1. Example of finite element mesh, (a) Region analysed numerically, to represent 
SENB, SENT, DENT or CCP specimens,   (b) Refined mesh along the crack line. 

with uniform tensile stresses or linearly varying pure bending stresses, respec- 
tively, applied at the ends. For a center-cracked panel (CCP) the full specimen 
covers the region - H0 < x2 < H0 , - W0 < xl < W0 , and uniform tensile 
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stresses are applied at the ends. In the the following these four specimens will 
be referred to by the abbreviations mentioned in parentheses. 

The material is modelled as an elastic-plastic solid, using the Mises yield 
surface with isotropic hardening. Furthermore, the fracture process is repre- 
sented in terms of a plastic strain dependent cohesive zone model, as in the 
investigation of Tvergaard and Hutchinson (1995) for conditions of small-scale 
yielding. The approximating assumption is made that plane strain conditions 
apply throughout the specimens analysed. 

In the analyses finite strains are accounted for, using a convected coordinate, 
Lagrangian formulation of the field equations, in which gy and Gy are metric 
tensors in the reference configuration and the current configuration, respec- 
tively, with determinants g and G , and ny = ViiGy - gy) is the Lagrangian 
strain tensor. The contravariant components tlj of the Kirchhoff stress tensor 
on the current base vectors are related to the components of the Cauchy stress 
tensor oij by tij = 7G/g aij . Then, in the finite-strain generalization of 
J2-flow theory discussed by Hutchinson (1973), an incremental stress-strain 
relationship is obtained of the form xij = Lijklr|kl. The value of the tangent 
modulus at a given stress level is determined from the uniaxial true stress-loga- 
rithmic strain curve, which is taken to be specified by the power law 

a/E for  a < ck 
\1/N 

(aY/E)(a/aY)      ,   for  a > aY 
(1) 

6j 62 6c 

Fig. 2. Traction-separation relation for fracture process. 
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Here, oY is the initial yield stress, E is Young's modulus, and N is the strain 
hardening exponent. 

The traction-separation relation used by Tvergaard and Hutchinson (1992, 
1994) to model the fracture process (Fig. 2) is fully specified by the work of 
separation T0, the peak stress a , and the shape parameters b1/&c and 
82/8c . According to this model failure initiates when the true normal stress 
ahead of the crack reaches the value a, and no crack growth is predicted at all, 
if the stress level 6 is not reached. The modification of this separation law, 
used by Tvergaard and Hutchinson (1995) to represent a plastic strain controlled 
failure mechanism, is analogous to that employed by Tvergaard (1992, 1995) in 
studies of ductile particle debonding during crack bridging in ceramics. With 
this modification the peak stress o in the traction-separation relation of Fig. 2 
is gradually reduced when the effective plastic strain e£ along the crack path 
has exceeded a critical value   ec 

o0 , for   el < e c 

a0 - Aa(e£ - ec)/Ae , for   ec < el < ec + Ae (2) 

a0 - Aa , for   el > ec + Ae 

Thus, with (2) the cohesive zone model accounts for a reduction of the material 
strength, which could result from plastic strain controlled nucleation of voids or 
from accelerated void growth near the crack tip. 

The numerical solutions are obtained by a linear incremental method using a 
finite element approximation of the displacement fields in the incremental ver- 
sion of the principle of virtual work. The elements used are quadrilaterals each 
built-up of four triangular, linear-displacement elements. In the uniform mesh 
region in front of the initial crack-tip the length of one square element is 
denoted as A0 (see Fig. lb), and the uniform mesh region contains 100 X 3 
quadrilaterals. Most of the computations are carried out with 8C = 0.1A0, 
8,/öc = 0.15 and 82/8c = 0.5 , and with W0 = 1000A0 . The value of the 
effective plastic strain el in (2) is calculated as the average over the quadrilat- 
eral element adjacent to the point considered in the debonding region. The edge 
loads at x2 = H0 are applied incrementally, and a special Rayleigh-Ritz finite 
element method is employed to control nodal displacements within the fracture 
process zone (see also Tvergaard, 1990b). 

Two reference quantities K0 and R0 are used for the presentation of results 

K0 = [Er0/(l-vf , R^ig^ii     (3) 

Here, K0 represents the mode I stress intensity factor needed to advance the 
crack when plastic dissipation is negligible; i.e. the value needed to supply just 
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the work of the fracture process   T0 , when the modification (2) is not active. 
The expression for   T0  is 

r0 = 

80 

adö = ^a0[8c + 82 - öj (4) 

The reference length    R0   scales with the size of the plastic zone when 
K   =   Kg . 

The value of the J-integral is calculated on a number of contours around the 
crack-tip. After some crack growth the path-independence of the J-integral 
breaks down for contours close to the tip, but remains in a region of more 
remote contours. The K-values to be shown in the following are computed from 
J-integrals on remote contours. 

3.   Results 

The elastic-plastic material to be considered here has the parameter values 
N = 0.1 and oY/E = 0.002 in (1), and the value of Poisson's ratio is 
v = 0.3 . For the traction-separation relation the two parameters a0 and T0 

(or K0) appear directly in the figures presenting the results. The first computa- 
tions are carried out for the region shown in Fig. la, with   A0/W0 = 0.6 and 
H0/W0 = 2 , and withA   A0/W0 = 1000 , 
Ae = 0.05   and   (60 - Aa)/aY = 1.0. 

6, = 0.1 An ,    ec = 0.05 

Fig. 3. Crack growth resistance curves for specimens with a0/oY -3.5, ec - 0.05 
and   A0/W0 = 0.6 . 
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Fig. 3 shows crack growth resistance curves computed for 60/aY = 3.5 , 
corresponding to the four different specimen geometries considered in this 
paper. It is well known that different specimen geometries give rise to different 
levels of T-stress at the crack-tip (Hancock, Reuter and Parks, 1991; Xia, Shih 
and Hutchinson, 1995). Thus, different specimen geometries will give rise to 
different crack growth resistance curves, even in cases where the specimen size 
is large enough to give small-scale-yielding (Tvergaard and Hutchinson, 1994). 
In the present case the length of the initial uncracked ligament satisfies the 
relation W0 - A0 = 3.08 (K0/oY)2 , which is within the ASTM-require- 
ments for compact tension specimens (since 3.08 > 2.5), so that such speci- 
mens would be large enough for testing linear elastic fracture mechanics (e.g. 
see Hutchinson, 1979; Carlsson, 1985). It is known that compact tension speci- 
mens show rather large constraint, T/oY — 0.4 , and the present SENB speci- 
mens are rather similar to that; but DENT specimens have a negative T-stress 
and CCP specimens have a rather large negative T-stress, giving a larger plastic 
zone, so that larger specimens size would be required in these cases for valid 
KIC testing. It is noted that if the specimen width W0 was taken to be 
50 mm, then for a steel the reference fracture toughness K0 would be about 
34 MN/m3/2, which would correspond to a tough steel. 

For the material parameters used in Fig. 3 previous studies (Tvergaard and 
Hutchinson, 1992, 1995) have shown that a steady-state fracture toughness is 
reached under small-scale-yielding conditions in the range of Aa/R0 values 
considered, and that plastic strain has no effect on the fracture process, as el 
remains smaller than ec . This type of behaviour is found in Fig. 3 for the 
SENB, SENT and DENT specimens, with different values of the steady-state 
fracture toughness due to the different T-stress levels resulting from the speci- 
men geometries. For the CCP specimen the crack growth resistance is signifi- 
cantly higher than found for the other specimen geometries, the plastic strain 
controlled failure mechanism (2) does play a role, and a steady-state fracture 
toughness is not reached in the range studied. 

In Fig. 4 the interface strength is higher,. 60/aY = 3.75, while all other 
material parameters are identical to those in Fig. 3, and thus W0 - A0 = 2.88 
(K0/aY)2 . Here, the values of e£ near the crack-tip exceed ec slightly for the 
SENB, SENT and DENT specimens and much more for the CCP specimen. In 
this case none of the crack growth resistance curves reach their maximum in the 
range considered; but still the SENB and CCP specimens show the lowest and 
highest crack growth resistances, respectively. 

In Fig. 5, for o0/oY = 4.0 and all other material parameters unchanged, the 
specimens satisfy the relation W0 - A0 = 2.70 (K0/oY)2 • Here, the values 
of €e near the crack-tip exceed ec significantly for all four specimen geome- 
tries, so that the plastic strain controlled failure mechanism (2) plays a strong 
role. It is seen that the differences between the crack growth resistance curves 
predicted for the four specimen geometries are much reduced compared to Fig. 
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Fig. 5. Crack growth resistance curves for specimens with O0/oY — 4.0 , ec — 0.05 
and   A0/W0 = 0.6 . 

4, which continues the trend going from Fig. 3 to Fig. 4. This also agrees with 
the trend found by Tvergaard and Hutchinson (1995) for small-scale-yielding 
conditions that the predicted T-stress dependence of the crack growth resistance 
curves is reduced as the values of oQ/oY and ec are increased. In Fig. 5 the 
lowest curve is still that for the SENB specimen, in most of the range consid- 
ered; but the curve for the CCP specimen is here slightly below that for the 
DENT specimen. 
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Fig. 6. Crack growth resistance curves for different size DENT specimens with identical 
material parameters, a0/oY = 3.75, ec = 0.05 , A0/W0 = 1000 , 8C/An = 0.1 
and   A/W = 0.6 . 

The specimen size dependence is considered in Fig. 6 by comparing crack 
growth resistance curves for DENT specimens of four different sizes. The mate- 
rial parameters are identical to those considered in Fig. 4, with o0/aY = 3.75 
and with A0/W0 = 1000. To introduce the different specimen sizes the 
dimensions A0 , W0 and H0 in Fig. 1 are replaced by A, W and H , 
respectively, with the ratios A/W = 0.6 and H/W = 2 fixed. Then, it is 
clear that the curve marked W = W0 in Fig. 6 is identical to that for the 
DENT specimen in Fig. 4, and that the other three curves in Fig. 6 correspond 
to specimens 2 , 4 and 6 times larger, respectively. It is noted that the fixed 
value of A0/W0 is necessary in this comparison, as it has been found (Tver- 
gaard and Hutchinson, 1995) that the plastic strain dependent traction-separa- 
tion relation (2) results in a certain mesh sensitivity of the predicted crack 
growth resistance curves. Thus, when this model based on the embedded cohe- 
sive zone is used for a particular material, both the parameter values specifying 
the traction-separation law and the mesh size along the crack growth path must 
be kept fixed. It is noted that the critical strain value ec in (2) is only slightly 
exceeded by   e£  near the tip in these four computations. 

The curves in Fig. 6 show that there is a specimen size dependence, such that 
the level of the predicted crack growth resistance decays for increasing speci- 
men size; but the curves for the two larger specimens differ only little. The 
values of the ratio (W - A)/(K0/oY)2 for these four specimens are 2.88 , 
5.75, 11.50 and 17.26 , respectively, which indicates, even for DENT speci- 
mens, that the sizes of the larger specimens are well into the range representing 
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Fie 7 Crack growth resistance curves for different size DENT specimens with identical 
material parameters, b0/oY = 3.75, ec = 0.05 , A0/W0 = 1000 , Öc/A0 = 0.2 
and   A/W = 0.6 . 

small-scale-yielding. Thus, it is assumed that the two lower curves in Fig. 6 
correspond to the behaviour under conditions of small-scale-yielding. In fact, 
to directly compare with the small-scale-yielding results of Tvergaard and 
Hutchinson (1995) a computation for a large SENB specimen, W = 6W0 , has 
been carried out with somewhat different material parameters (0Y/E = 0.003 , 
£o/0y = 4.0 , (o0 - Ao)/oy = 0.1 and ec = 0.03) , and good agreement 
has been found. 

In Fig. 7 resistance curves are compared for the same four sizes of DENT 
specimens, with the same set of material parameters apart from one difference, 
8C = 0.2 A0 . This double value of the critical separation 8C also doubles the 
values of T0 and R0 , respectively, compared to the values in Fig. 6. Thus, for 
the same amount of crack growth, Aa/W0 , in Figs. 6 and 7 the value of 
Aa/R0 is only half as large in Fig. 7, since the plastic zone size is doubled. In 
Fig. 7 the values of the ratio (W - A)/(K0/oY)2 for the four specimens are 
1.44, 2.88, 5.75 and 8.63 , respectively, and it is found that in all four cases 
the piastic strain controlled failure mechanism (2) plays a strong role. The crack 
growth resistance curve for the largest specimen in Fig. 7, W = 6W0 , may 
have converged towards the result for small-scale-yielding; but clearly the 
curve for W = 4W0 has not, as this curve shows somewhat higher crack 
growth resistance. In the computation for the smallest specimen, W = W0, the 
path independence of the J-integral breaks down for contours close to the grow- 
ing crack, as in all computations, but here to such an extent that there is hardly 
any path independence for    Aa/R0 > 2 . This may partly explain why the 
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crack growth resistance curve for   W = W0   is only slightly above or even 
intersects that for   W = 2W0   in Fig. 7. 

A comparison of crack growth computations for different specimen geome- 
tries was also carried out by Xia et al. (1995), using a modified Gurson model 
(Tvergaard, 1990a) to represent the fracture process. With a fixed set of material 
parameters and a fixed mesh size along the crack growth path, to represent a 
particular material, this model was found to reproduce important aspects of the 
specimen shape dependence of crack growth resistance curves. Also the alterna- 
tive approach adopted in the present paper, based on a plastic strain dependent 
cohesive zone model, shows trends in the specimen shape dependence that 
agree with experimental observations (as e.g. Hancock et al, 1991). Regarding 
a specimen size dependence of the crack growth resistance curves it is noted 
that also Xia et al. (1995) found increasing resistance for decreasing specimen 
size. 
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Abstract 

Ductile crack propagation is modelled for deeply side-grooved double cantilever 
beam (DCB) and compact tension (CT) specimens using simple beam on elasto- 
plastic foundations. The side grooves dominate the constraint at the crack tip so 
that the deformation within the fracture process zone is one of uniaxial strain. 
Under these conditions there is little change in constraint with crack growth and 
the specific essential fracture energy is constant. In DCB specimens there is self 
similar crack propagation, but there is a rising JR-curve that is size dependant. In 
small CT specimens the crack growth is not self similar and the fracture work is 
not constant. Under these conditions even the initiation J is not necessarily equal 
to the specific essential energy. 

1. Introduction 

There are three problems in the development of non-linear elastic fracture for 
ductile metals. Firstly unloading necessarily occurs during crack propagation that 
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causes completely non-proportional deformation as shown experimentally 
(Hancock et al., 1993: Joyce and Link, 1995) and demonstrated theoretically (Xia 
and Shih 1995a,b). The J-integral is the rate of change in potential energy of the 
system that, when applied to an elasto-plastic specimen, includes the plastic work 
dissipated outside the FPZ as well as the fracture work dissipated within the FPZ. 
The J approach works for initiation because the work dissipated outside the FPZ 
in an elasto-plastic specimen cannot be distinguished from the energy stored in an 
equivalent non-linear elastic specimen and hence at initiation J is the specific 
fracture energy, R, at initiation. Even in the case of fracture initiation, J is only 
a material property if the crack grows in a self similar fashion. Barenblatt's 
(1962) hypotheses for the fracture work, R, being a material constant, R„, given 
by 

R0 - r<odb (1) 
Jo 

apply equally well to elasto-plastic fracture as they do to elastic fracture. If the 
size of the FPZ changes with crack growth, then R*R0, and JR#R even at 
initiation. 

The FPZ in ductile fracture can be identified with the strain-softening 
region where the voids are growing faster than can be compensated by strain 
hardening. The Gurson (1977) model, as modified by Tvergaard (1982), is 
accurate for the initial stages in strain softening but does not predict the final 
coalescence of voids by cavitation or shear localization. Without an accurate 
prediction for the final coalescence of the voids, which controls the specific 
fracture energy, R,, it is difficult to model ductile fracture in conditions of 
varying constraint. Deep side-grooves have a dominant effect on the degree of 
constraint and it is not unreasonable to assume that under these conditions that the 
deformation within the FPZ is one of uniaxial strain despite the specimen 
geometry. With the double cantilever beam (DCB) and compact tension (CT) 
geometries, the deep side grooves have another benefit in that they allow an 
approximate analysis using the theory for beams on elasto-plastic foundation. 
Hence in this paper the effect of size on the fracture work R and the JR-curve is 
examined. Such an analysis is not suggested for analysis of practical problems, 
but is used here simply to discuss the mechanics of ductile fracture. 

2. Modelling ductile fracture in DCB and CT specimens with deep side 
grooves 

Foote and Buckwald (1985) have shown that the Gross and Srawley (1966) 
expression for the elastic stress intensity factor, K, for a DCB specimen is 
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accurate to within 0.3% for a specimen whose crack length to beam height ratio 
a/H is as small as 0.3. Rewriting the Gross and Srawley expression in terms of 
the energy release rate, G, gives approximately 

12PV 
2rr3 B2H 

1 ♦ 1.374 (2) 

The first term in Eq. 2 comes from the strain energy stored in bending due 
bending. The second comes from both the shear strain energy and rotation of the 
beam at the tip of the crack. Using the expression for the shear deflection of a 
beam (Gere and Timoshenko, 1991), the contributions from shear deformation is 
0.542(H/a)2 (taking Poisson's ratio, v=0.3), thus the major contribution comes from 
the rotation at the crack tip. If the beam has side grooves, the effect of rotation will 
be enhanced and therefore it is suggested that even CT specimens, provided that 
they have deep side grooves, can be analysed as beams on elasto-plastic 
foundations; the plastic deformation in the arms is modelled by the usual engineers' 
theory of bending. During propagation there is elastic unloading behind the crack 
tip which makes the load-point deflection for a crack that has propagated to a 
certain crack length, a, larger than the deflection for a beam with an initial crack 
length equal to a. 

The constraint on plastic deformation assumed for the deep side notched 
specimens only allows plastic deformation because of the formation of voids. 
Hence the maximum stress in the FPZ occurs at plastic strains of the order of the 
yield strain. For a FPZ with an initial void volume fraction of 0.005, yield strain 
eo=0.002, and strain hardening exponent n=0.1, typical of a pressure vessel steel 
such as ASTM A533B, the maximum stress is of the order of four times the yield 
strength, a0 (Xia and Shih, 1995b). The stress falls only gently after the maximum 
stress is reached and it is assumed that in the FPZ that the stress is elastic up to the 
maximum stress, Ca0, and is then constant until the FPZ is completely fractured 
(after a displacement, 6f). Under these assumptions, the specific essential work for 
an infinitesimally thin FPZ is, R0=Co06f. 

Two type of models have been employed to model the stress in the 
ligament. 

2.1 SPECIMENS WITH LARGE LIGAMENTS 

For specimens with large ligaments, either absolute or compared with the beam 
height, H, the specimen has been analyzed as a beam with a constant stress, Co0, 
in a FPZ at the tip of the crack outside of which the beam rests on an elastic 
foundation. The stiffness of the elastic foundation can be calculated from the B. 
assumption that the straining is uniaxial so that the stiffness, k, of the "foundation" 
is given by 
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(l-v)E 
(l+v)(l-2v) H. 

(3) 
■/ 

where Bn is the width of the side grooved section, and PL, is the height of the 
grooves (see Fig. la). The most important factor determining the behaviour of the 
specimens is their scale relative to the characteristic length, lch, of the material 
which is defined by 

ICH -{ERo)'°l (4) 

A typical distribution of stress along the ligament of a DCB specimen with side 
grooves that reduce the specimen width to 25% is shown in Fig. la for a non- 
dimensional beam and groove height of H=0.1 and Hn=0.002 respectively (this 
height typically corresponds to 0.5mm for a ductile metal). The material is assumed 
to deform according to the true stress strain relationship 
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Figure 1. Stress distribution in the ligament of (a) a DCB specimen, H=0.1, W/H=6, 
(b) a CT specimen, H=0.1, W/H=1.667. 
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for e < e0 , e o = — 

(    \ 
e 

V7oy 

(5) 

for e > e0 

In Fig. 1, the strain hardening exponent, n, is assumed to be 0.1 and the strain at 
yield e0 = 0.002. The arms of the specimen described in Fig. 1 (a), yield before the 
initiation of a ductile tear the moment at the crack tip being 1.72 times the yield 
moment at initiation rising to a maximum of 1.77 times before dropping to 0.846 
when a/W = 0.9. For short crack lengths the stress distribution does not vary 
significantly, but as the crack approaches the back face of the specimen. The stress 
and displacement outside of the FPZ becomes linear and the compressive stresses 
become high and yielding must occur. The load-deflection curves for specimens 
with long ligaments are not significantly affected by the constraint factor C. 

2.2 SPECIMENS WITH SMALL LIGAMENTS 

For specimens that would yield in compression at the back face, it is assumed that 
the strain in the ligament outside of the FPZ is a linear function of its position. 
Yielding in compression is very sensitive to the degree of constraint, because 
uniaxial straining with no volume change is assumed. Therefore it has been 
assumed, rather arbitrarily, that in the compression region of the ligament that 

o = -Cac 

-Ca„ 

for 6 < 8 0' 

(6) 

for 6 > 60 

where 60 = CooB^k is the elastic stretch in the FPZ. With this assumption there is 
no yielding in compression until the crack approaches the back face of the 
specimen when the strain distribution becomes linear. The load for a particular 
crack length can be found from consideration of the equilibrium of the specimen. 
The stress distribution along the ligament of a CT specimen (side-grooved to 25%) 
that yields along the back face is shown in Fig. lb. Here strictly unloading in the 
zone that has yielded in compression should be considered, though unloading in the 
arms does significantly affect the J-integral, unloading in the compression zone is 
less important and has been neglected. Here the load is very obviously dominated 
by the constraint factor C. Since no experiments have been carried out on CT 
specimens with deep side grooves the validity of this modelling has not been 
proved. 
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Figure 2. Load deflection curves for two DCB a-brass specimens 
(o„ = 230 MPa, e0 = 0.00217, n = 0.33, v = 0.33, Bn/B = 0.063) 

3. Comparison of experimental results with model 

To date experiments have only been made on DCB specimens with very large 
ligaments. The load-deflection curves for two a-Brass specimens with initial crack 
lengths of 90 and 130 mm are shown in Fig. 2. The arms in both of these specimens 
yield before a ductile tear is initiated. The Young's modulus, and plastic behaviour 
of this material was found from independent tensile tests. The constraint factor C 
was assumed to be 4 and the critical crack opening displacement 6f= 0.0815 mm 
(equivalent to specific fracture energy R„ = 75 kJ/m2) was found by determining the 
best fit to the results obtained for the shorter of the two crack lengths. The loads 
agree extremely well, whereas the deflections are slightly underestimated by the 
model. This under estimation may be because the effective height of the groove 
should be slightly greater than the height of the machined groove. 

4. Fracture work and the J„-curve 

Crack propagation in the DCB specimen is almost perfectly self-similar with the 
FPZ translating ahead of the crack tip with only insignificant changes in its shape 
caused by a change in the ratio of the bending moment to shear force at the crack 
tip. However, in the CT geometry or when the crack in a DCB specimen 
approaches the back face, there can be significant changes in the size of the FPZ. 
When the crack propagation is steady-state, the fracture work, R (defined as the 
work performed within the FPZ to increase the crack by a unit area) is identically 
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equal to the specific essential work, Ro, and the value of the J-integral at initiation, 
Jlc, is identical to R^,. Under such conditions the fracture work, R=R„, is constant 
during crack propagation. However, if the crack propagation is not steady-state, the 
work of fracture R/R,,. If the concept of a finite width FPZ is employed, the work 
already performed on the pupative FPZ as it enters the FPZ must be considered as 
well as the work performed within it. During a crack extension of da, the FPZ 
propagates by (da+da,,), where a,, is the length of the FPZ. The work already 
performed per unit length on this new portion of the FPZ is 0.5Co-oSo, where 
60=CoJiJk is the elastic stretch in the FPZ. Thus the work of fracture is given by 

R /r co„ J-<6-*,,*. £^ 1 + —
p- 

da 

'#;"<6 

(7) 

= i^Co   «</—> (6-6^+ M 

where Pv=Ca0(6f - hjl). This definition of the essential work of fracture, for a 
finite width FPZ, is slightly different to R,, to insure that during steady-state crack 
growth Ji^Ro- When the FPZ approaches the back face of the specimen and enters 
material that has already been strained in compression the work already performed 
in the pupative FPZ should be included, but such large crack growths are probably 
not important. The plastic component of the J-integral for deep side grooved CT 
specimens can be calculated from the ti-factor given by Merkle and Corten (1974) 
using the correction for crack growth given by Ernst et al. (1981). The plastic 
component of the J-integral for the DCB specimen can also be analyzed using an 
tip-factor = 1.08 based on the crack length, a, rather than the ligament so that 

Jp * 
P-[*pPd*p (8) 
.a Jo p 

where Ap is the plastic load-line deflection (Cotterell et al. 1995). The elastic 
component, Je, can be determined from the elastic compliance of the specimens for 
both CT and DCB specimens. r 

The FPZ size, the work of fracture, R, and JR are shown for two DCB 
specimens ( with side grooves that reduce the thickness to 25%) of non- 
dimensional height (H = H/l,.h) of 0.1 and 0.2 are shown in Fig. 3. It can be seen 
that the apparent crack growth resistance, implied by the JR-curves, increases with 
crack extension and depends upon the size of the specimen whereas the essential 
fracture work, R remains constant. As JR reaches a maximum the model of section 
2.1 ceases to be appropriate. 
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Figure 3 Fracture work in DCB specimems, W/H=6, H=0.1, 0.2 

Unloading in the arms has a large effect on the deflection and JR as can be seer 
from Fig. 4 where the load deflection curve obtained during crack propagation is 
compared with the locus of the initiation load-deflection for different crack lengths 
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Figure 4. Load-deflection curve for DCB specimen (H=0.1, W7H=6, Bn/B=0.25, &JW=0.5) 
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The results for the CT geometry are shown in Fig. 5 for specimens whose 
non-dimensional heights H are 0.1 and 1. Here the larger specimen has been 
analyzed using section 2.1, but the smaller specimen has to be analyzed according 
to section 2.2. The results for H=1.0 are very similar to those for the DCB 
specimen, but for H=0.1 the size of the FPZ decreases significantly with crack 
growth causing the essential fracture work, R, to be less than R„ and J; to be greater 
than Ro. In the smaller specimen JR only decreases slightly with crack growth 
because the stress distribution is very similar to that assumed by Merkle and Corten 
(1974) in their estimation of the t\ -factor.. 
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Figure 5. Fracture work in CT specimens Bn/B=.25, (a) H=1.0, a„AV=0.3; (b) H=0.1, a„/W=0.4. 

5. Conclusions 

The ductile fracture of DCB and CT specimens, with deep side grooves, can be 
modelled approximately by the use of the engineers' theory of bending treating the 
side-grooved section as a foundation to the beam. This model enables the 
relationship between the essential work of fracture within the FPZ and the JR-curve 
to be examined. It has been assumed that the deep-side-grooves dominate the 
constraint at the crack tip so that the FPZ deforms uniaxially. With this assumption, 
the stress-displacement relationship within the FPZ is unique and hence the specific 
essential energy Ro is a constant. Except at initiation most of the crack growth 
resistance implied by the JR-curve includes large amounts of work performed 
outside of the FPZ which depend upon the size and geometry of the specimen. This 
conclusion is not new, but here the essential fracture work performed within the 
FPZ has been clearly identified. In fracture mechanics we should be seeking 
material constants, the JR-curve is not a material constant. While the work of 
fracture in the FPZ depends upon constraint, it is a better candidate for a fracture 
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parameter than the J integral. However, in very small specimens the work of 
fracture in the FPZ need not be identical to the specific essential work R„. The most 
fundamental parameter is the stress-displacement relationship within the FPZ. 
However, at the moment there is no simple model that gives accurately the 
complete stress-displacement curve. 
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INTERFACIAL CRACKING IN THERMOMECHANICALLY LOADED 
ELASTOPLASTIC BIMATERIALS 

K.P. HERRMANN AND T. HAUCK 
Laboratorium für Technische Mechanik 
University of Paderborn 
Pohlweg 47-49 
D-33098 Paderborn, Germany 

1. Introduction 

The failure analysis of thermally loaded two-phase compounds, in material 
science usually denoted as bimaterials, requires the determination of stress 
states due to applied nonstationary temperature fields as well as the considera- 
tion of the mismatch of the mechanical and thermal material constants. The 
structural performance of material compounds is essentially affected by exist- 
ing defects of various kinds. Regarding the formation of yielding zones in 
ductile materials, which particularly arise in the vicinity of defects, the utiliza- 
tion of elastic-plastic constitutive equations is necessary. Various publications 
address the problem of mechanically strained interface cracks in elastic-plastic 
bimaterials. For the case of small scale yielding (SSY), HRR-like stress field 
structures have been found [1, 2]. Proceeding contributions based on the de- 
formation theory have provided asymptotic stress fields, where the leading 
term of those asymptotic stress fields is parameterized by the /-integral [3, 4]. 
From the mechanical point of view, an energy balance in the crack tip area 
identifies the /-integral as a crack driving force [5, 6]. In this paper, the quanti- 
tative characterization of different self-stress states in the vicinity of an interfa- 
cial crack tip is performed by using the /-integral, where the influence of tem- 
perature gradients close to the interface crack tip is of most interest. 
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2. Basic Equations 

The calculation of stress states in thermally loaded bimaterials is based on a so- 
called sequentially coupled solution of the heat transfer and thermal stress ini- 
tial boundary value problem. Firstly, the heat transfer problem is mathemati- 
cally described by Fourier's law as follows 

W[XVT(Xi,t)] = Q(Xi) + pcp^- (1) 

where Q(x) denotes the given distribution of heat sources, X the coefficient of 
thermal conductivity, p the material density and cp the specific heat coefficient. 
The transient response analysis of the heat transfer problem yields the inhomo- 
geneous, time-dependent temperature field T(x., t). Secondly, the analysis of the 
thermally induced self-stress state in the bimaterial is performed based on the 
incremental theory of plasticity by using the subsequent constitutive material 
equation 

de 1 + V-ds„ + ]-^-8ijdakk + SyadT;   (ae <a0) 

de. 

E     "      3£ 
l-2v 1+v, 

 ds„+  
E      '      3£ 2LpOe 

(2) 

(3) 

where der defines the incremental strain tensor, sy the deviatoric part of the 
stress tensor, att the trace of the stress tensor, at the effective stress, a0 the yield 
stress, E Young's modulus, v Poisson's ratio, Ep the plastic tangential modulus, 
a the thermal expansion coefficient and dT the incremental temperature 

change. 

Ej: Tangential modulus 

E:  Young's modulus 

Figure 1. Bilinear stress-strain relation 

For this material law, von Mises's yield condition, an associated flow rule and 
isotropic hardening is assumed. Figure 1 shows the applied bilinear relation 
between the effective stress a. and the effective strain £.. 
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The solution of the initial boundary value problem is performed by utilizing the 
finite element software system SOLVIA, where most of the included routines 
needed for the present problem refer to a publication by Snyder and Bathe [7]. 

3.    /-integral 

3.1  DEFINITION 

The quantitative characterization of different self-stress states is performed by 
the /-integral, where the /-integral values are obtained from corresponding fi- 
nite element calculations of the associated stress and deformation fields. 

Material 1 
Interface crack 

Material 2 

Figure 2. Contour- and domain integration 

The basic approach for the vectorial Jk -integral to be introduced in order to 
describe a virtual crack extension in the ^-direction reads 

Jt =lim ]btin,dr 
*      e-»0 J    *;    ' 

(4) 

where bkj is Eshelby's energy momentum tensor and nj is the unit vector perpen- 
dicular to the line element dT of the contour re. According to the references 
[5, 6], Eshelby's energy momentum tensor bkj is given by 

fr^WS«,-«,«,.,;   W= ja.de;;   de? =d(tij-attii) (5) 
fcy 

where W denotes the strain energy density and «. the displacement vector. The 
projection of the /^-vector on the direction of the virtual crack extension mk 

yields the magnitude of Rice's /-integral, namely 

J = mkJk- (6) 
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3.2. EQUIVALENT DOMAIN INTEGRAL REPRESENTATION 

The evaluation of the /-integral is performed by applying the equivalent do- 
main integral method (EDI) [8]. By the help of the weight function s(x) 

s = ^\ä (7) 
R 

and invoking Gauss's divergence theorem it is possible to convert the contour 
integral (4) into the following domain- and contour integral [8]: 

h= - JKVn + J^Vr (8) 
fl,un2 r,ur2 

By restricting to monotonic applied loads and by neglecting volume forces the 
final expression 

Jk=   -   flWs^-OijU^s^-o^aT^sjdn   +   jsAb^dT (9> 
n,oQ2 r,ur2 

for the the /^-integral is gained. 
The remaining contour integral in formula (9), in which, as should be re- 

minded, the energy momentum tensor is discontinuous along the crack T, and 
the interface T2, vanishes, if the crack propagates along the ligament T2 as well 
as if no loads are subjected to the crack surfaces T, [9]. The calculation of the 
domain integral is carried out in the curvilinear coordinates of the applied 
isoparametric finite elements and by using the Gauss-Legendre quadrature for- 
mula. 

4. Application 

4.1. THERMOMECHANICALLY LOADED INTERFACE CRACK 

The bimaterial sheet damaged by an interface crack and depicted in Fig. 3 is 

considered. In addition, a heat source g of constant power supply g0 [//sm3] 

after initiation at time t = 0 and located in a small circular domain at the given 
position (rQ, dß) in one of the respective bimaterial components is assumed to 
act. 

For completeness of the thermal boundary value problem, at the external 
boundary a convective heat-transfer is defined, according to 

"iT.j-JF.-n (*.er) (10) 



INTERFACIAL CRACKING IN BIMATERIALS 119 

where Tu denotes the environmental temperature and ß is the heat convection 
coefficient. On the crack surfaces the so-called natural boundary condition 

n/Tv = 0;   (x^r,) (11) 

holds true; that means the crack surfaces behave like thermal insulators. At init- 
ial time f = 0a constant temperature T(xi ,t = 0) = T0is prescribed. 

sternal boundary 
r 

Figure 3. Discretized bimaterial structure 

The external boundary of the bimaterial and the crack surfaces are assumed to 
remain stress-free, that means 

<yiy=0;   (x^TuT,). (12) 

Further at the interface the continuity conditions for the traction vector and the 
displacement vector, respectively 

a^=<«,;   «/=«*;   feer2). (13) 
has to be fulfilled. Moreover, plane stress state calculations have been carried 
out for zero initial stresses. Table 1 assembles the used material constants for 
the selected bimaterial. 

TABLE 1. Material constants 

Material X 
[W/Km] [J/kgK] 

P 
[kg/m3] 

ß 
[W/Km2] 

E 
[MPa] 

v 

[1] [1/K] 
Go 

[MPa] [MPa] 

1 113 376 8440 200 9000 0.35 2.110' 50 300 

2 15 502 7800 200 210000 0.29 1.19 10s 100 7000 
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For the thermal stress analysis under investigation, the heat source g is as- 
sumed to be situated at various positions of a circle centered in the inter- 
face crack tip and with the coordinates (jQ = 25 mm, -90° < -&Q < 90°). The fan 
90° < #ß < 270° was excluded from the analysis due to a possible interpenetrat- 
ion of the crack surfaces. Figure 4 shows the almost stationary temperature 
distribution in the bimaterial for the chosen heat source positions (rß = 25 mm, 
■dß = ±45°) at the time t = 600s. For the stationary case, the thermal energy 
supplied by the source is removed from the bimaterial by the convective heat 
flux along the external boundary. As thermally isolated crack surfaces are pre- 
scribed, the heat flux within the bimaterial is being redirected by the crack and 
accounts for the heat flux vector square root singularity at the interface crack 
tip [10]. 

tfe =-45°, rß= 25 mm #e =+45°, rß= 25 mm 

I 

70 0 .0 
640 .0 
580 .0 
520 .0 
460 0 
400 0 
34 0 0 
280 o 
220 0 
160 0 
1 00 0 

77°C 

Figure 4. Bimaterial-T(jt, t = 600 s) distribution 
(lateral length =100 mm) 

The most important features of the analysis of the interface crack are the dis- 
tributions of the temperature and of the stress tensor components, respectively, 
nearby the crack tip. The magnitudes and the directions of the temperature 
gradients strongly depend on the #0 -coordinate of the heat source location. The 
temperature as well as the temperature gradients take maximum values for 
■&g < 0° due to the smaller heat conduction coefficient X2 of the material 2, cf. 
Fig 5. 
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/ 

W 

#0 =-45°, rß= 25 mm # =+45\r = 25mm 77 °C 

Figure 5. Bimaterial-T(x., t = 600 s) distribution 
at the crack tip surroundings (radius = 10 mm) 

Figures 6-8 depict the distribution of the stress tensor components related to the 
previously presented temperature distribution. It is concluded from the struc- 
ture of the stress field contour plots that the direction of the temperature gra- 
dients plays a dominant role for the stress distribution. The near-tip singular 
stress field is superimposed on nonsingular stresses due to the thermal mis- 
match along the interface, which is especially visible for the case ■& < 0°. It is 
noteworthy that in this part of the bimaterial the stress fields are most influ- 
enced by the position of the heat source, because the source produces maxi- 
mum values of the temperature gradients for ■d < 0°. 

,e = -45°, rQ = 25 mm a /MPa 

I -18.00 

V = +45°,r =25mm     a /MPa 
Q '     Q " 

Figure 6. Bimaterial-a^, t = 600 s) distribution 
at the crack tip surroundings (radius = 10 mm) 
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öa = -45°, r = 25 mm     cM / MPa 

I 
# =+45\r =25mm     o^/MPa 

Figure 7. Bimaterial-c^C*:,, t = 600 s) distribution 
at the crack tip surroundings (radius = 10 mm) 

,;.X 

X 

de = -45% rQ = 25 mm 

r ■ 0.00 
40.00 
30.00 
20.00 
10.00 

-ID.00 
-2V.00 ^ -30.00 

1 -A COO 1 -50  00 

P 

V ̂ /MPa 

■ ,* 

I 
flß = +45°,rß = 25mm O^/MPa 

Figure 8. Bimaterial-crt(;c, f = 600 s) distribution 
at the crack tip surroundings (radius = 10 mm) 

The worst-case loading of the bimaterial can only be determined by calculating 
fracture mechanical parameters. In this contribution, the assessment of the self- 
stress states in the cracked bimaterial is realized by calculating Rice's /-inte- 
gral. A special postprocessor adopting the presented theory of section 3 was 
developed in the Laboratorium für Technische Mechanik. The numerical inte- 
gration was conducted for various circular domains centered at the crack tip 
(2 mm < R < 10 mm) by using the results of the finite element calculations. 
Figure 9 shows the /-Integral in dependence on the radius R of the integration 
domain for the heat source location (rg = 25 mm, #ß = -30°). 
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As can be recognized from the diagram given above the values of the /-integral 
do not depend on the chosen domain of integration. Therefore, the /-integral is 
appropriate for a further analysis. 

0.40 

0.35 

0.30 

| 0.25 

0.20 

0.15 

0.10 

0.05 

0.00 
30 60 90 120 150 180 210 240 270 300 

t Is 
Figure 10. J = J(t, $Q) 

Figure 10 depicts the transient behaviour of the /-integral versus varying heat 
source positions -&Q. For the cases of heat source positions #ß < 0°, the maxi- 
mum /-values arise before the stationary state is reached. On the other hand, for 
the cases ■dß>0°, the /-integral depends on time in an approximately linear 
manner and, in addition, almost does not change for heat source coordinate 
variations 0° < dß < 90°. Assessing the loading cases under investigation, the 
worst-case heat source position ftQ = -30° can be identified. 

 7^—^t—" 
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5. Conclusion 

In this contribution the investigation of a thermally self-stressed elastoplastic 
bimaterial damaged by interface cracks has been performed. The calculation of 
the corresponding self-stress states is based on the so-called sequentially cou- 
pled solution of the heat transfer and thermal stress initial boundary value 
problem. The thermal interface crack problem was solved by applying the finite 
element method. For this investigation, the influence of temperature gradients 
or heat fluxes, respectively, on the self-stress state was of most interest. It was 
recognized that the self-stress state at the interface crack tip is influenced by 
the position of the heat source and, in addition, apart from the thermomechani- 
cal material constants, by the heat conduction properties of the bimaterial com- 
ponents. The usage of the /-integral renders possibly the assessment of ther- 
mally induced self-stress states at interface crack tips in elastoplastic bima- 
terials, from which worst case conclusions can be obtained. 
Acknowledgment- The support of the German Research Foundation (DFG) is gratefully acknowl- 
edged by the authors. 
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CONDITIONS OF CRACK ARREST BY INTERFACES 
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Universite Paris 6 
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Abstract: When a crack in a layer reaches an interface with another layer, it may be 
arrested or at least retarded by the phenomenon of debonding of the interface and 
reinitiation of a new crack in the second layer. A Shear Lag analysis associated to 
Damage Mechanics gives closed form solutions for the crack arrest conditions or the 
number of cycles of fatigue to crack initiation which determines the retardation, as 
functions of the design parameters of multimaterials. 

1. Introduction 

The dream of any good designer of structures is to avoid cracks or to stop 
their growth if they may be present or at least to reduce the crack growth 
rate as much as possible. 

An old drastic repair of a cracked structure consists in drilling a 
small hole at the crack tip to remove the process zone and to oblige the 
crack to undergo a period of reinitation before it can continue to grow. In 
aeronautics, for example, riveted stiffeners on panels give a much bigger 
retardation effect on fatigue crack growth than built-in stiffeners because 
the crack in the riveted panel must reinitiate a new crack in the stiffener to 
continue to grow, which is not the case in the built-in stiffener where the 
crack continues to grow with a small retardation only due to the bigger 
thickness (Lemaitre 1974). 

In multimaterials, the interface may play the same role provided it is 
not too strong so that the crack cannot pass through instantaneously and 
not too weak to avoid a complete debonding of the interface. Stress 
solutions for cracks terminating at interfaces have been obtained in the 
prior work of Williams (Zak and Williams 1963), then by Erdogan 
(Erdogan and Biricikoglu 1973) and more recently by Ballarini and Huo 
(1991). The conditions of bifurcation of cracks in interfaces of 
multilayered materials have been much studied (He and Hutchinson 1989) 
(Jensen, Hutchinson and Kyung-Suk Kim, 1990) but not their reinitiation 
in the following layer probably because the location and the state of stress 
governing the crack reinitiation are difficult to analyze (Suo and 
Hutchinson 1990). In fact, a simple Shear Lag analysis associated to 
Damage Mechanics gives enough information to obtain a closed form 
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solution of the loading or the number of cycles of fatigue which induces a 
crack reinitiation in the second layer of a two layered material having a 
crack loaded in mode I in the first layer. From these approximate solutions 
it is possible to deduce qualitative results regarding the influence of design 
parameters such as the geometiy, the loading, the material properties and 
the quality of the interface on the crack reinitiation. It may help to optimize 
multimaterials against fracture. 

2. Mechanism 

Consider the two layered specimen of figure 1 where the layer A has a 
crack perpendicular to the interface I and is loaded in mode I by a remote 
stress GM. Several sets of experiments have shown that when aM 

increases monotonically or when it varies periodically as in a fatigue 
process, there is first a debonding of the interface over a length of the 
order of magnitude of the thickness of the layer A and then a reinitiation of 
the crack in the second layer B may occur or not depending upon the 
geometry and the material properties of the layers and the interface 
(Vidonne 1995). 

ahA 

<2 hg 

4>Xz 

n* — oz. 

Fig. 1 Reinitiation of a crack in a two layered specimen 
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The overload or the number of cycles of fatigue necessary to 
reinitiate the crack act as retardation effects in the failure process of the 
multimaterial and if no reinitiation occurs the interface acts as a crack 
arrestor. Let us see how the design parameters govern this phenomenon. 

3. Analysis of the Debonding of the Interface 

Suppose that the crack in the layer A has reached the interface. We neglect 
any bending effect and consider that the two layers are loaded in pure 
tension in order to apply the pure Shear Lag analysis to find the state of 
stress in the interface (Volkersen 1938). Using fracture mechanics to 
define the debonding length as in (Hutchinson and Suo 1992) may also be 
used but it does not help to define the conditions of crack reinitiation in the 
layer B. 

The two layers are elastic with Young's moduli EA and EB, the 
interface considered has zero thickness, has a shear modulus Gj and a 
debond shear stress xc. The equilibrium equations of the multimaterial and 
of each layer give rise to the following differential equation for the shear 
stress in the interface c[2 (Lemaitre 1992). 

( 
with X = 

GtE. V* 

v2hAhBEAEB, 
E   ^EAhA + EBhB 

hA + hB 
and 

da 
dx. 

n _ "12 

2hn 

For the boundary conditions considered : 
_          n         hA +hn x,=0   -xjf^o..-^ L 

The solution is: 
*!-»      o»-»On=0« 

o\2 = 2hAA.a„0 exp(-Ax,). 

An approximation for the debonding zone is the length 1D over which the 
calculated stress crj2 is larger than the debond critical value xc. 

Writing O|2(XI=1D) = xc gives 
2h4 

1 

UiV2 
Ln V2^H, 

Several qualitative conclusions may be drawn from this equation : 
- There is no debonding if: 
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V2q       <j     or     2a:hA   Gt   EAha + EBhB^L 

xc      ' x* hB EAEB     hA + hB 

This is a condition for crack arrest but with weak accuracy due to the 
approximation of the Shear Lag theory which gives a finite stress at 
x,=0. 

- For classical values of engineering parameters such as 
<*~/Tc>hA/VEA/EB'Gi/EA> the debonding length is of the order of 
magnitude of a few thicknesses of the cracked layer. 

0<-^-<10 
2hA 

- The debonding length decreases if hA/hB  decreases, or if a„/xc 

decreases, but it is not much influenced by the elasticity modulus. 

These results have been checked by a Finite Element Analysis (Vidonne 
1995). 

4. Analysis of the Crack Reinitiation Conditions 

The same Shear Lag analysis may be applied to find the state of stress in 
the layer B after a debonding of length 1D. The same equations apply with 
a translation of 1D (or - 1D) of the x, axis. 

- for 0 < xl < 1D, the layer B is subjected to a pure tension : 
R h. +h„ 

<*Ti=<*. --     - 
hB 

- for xl > 1D, the layer B is subjected to a shear stress equal, by continuity, 
at its upper surface x2 = 0, to the shear sttess in the interface : 

crf2 = a\2 = 2hA?ic^ exp(-A,[x1 - 1D]) 

and a tension stress, which is the solution of 

dx!        2hB 

with the boundary condition <jfj/Xi_^ = <*„,: 
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<*n = <*. l + ^exp(-X[Xl-lD]) 

Damage Mechanics now provides the concept of the Damage Equivalent 
Stress which governs the phenomenon of crack initiation (Lemaitre 1992). 
It is deduced from the Strain Energy Density Release Rate which is the 
associated variable to the Damage Variable D defined as the surface density 
of microcracks or microcavities in a Representative Volume Element: 

c=c R* eq     v 

where aeq is the von Mises Equivalent stress : 

(3 Y* 1 

and Rv the triaxiality function : 

(     V- 
Rv=-(l + v) + 3(l-2v) 

Vaeqy 

v being the Poisson's ratio. 

It is straightforward to calculate the Damage Equivalent Stress at the upper 
surface of the layer B as a function of x,, hA/hB and the group parameter 
\i2 defined by 

G,E„ 
U2=—— 

^A^B 

Figure 2 shows, as an example, that a* is maximum at the debond tip and 
its expression for x! = 1D is : 

f r T-1\J4 

/ 
1 + ^ 

hD 
+ 6^ 

hB 

NM 

f[1 + vB] + |[l-2vB] 1 + 6^ ti 

K' 1 + V 
hD 

This proves that the crack reinitiation in the layer B will occur at the point 
(x2=0,x, = lD). 
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0.2 0.3 
xl/2L 

Fig. 2 Damage equivalent stress evolution (L being a reference length) 

Another interesting result shown in figure 3 is that a\ despite its nice 
formula, is quasilinear with hA/hB and does not depend very much upon 
the material parameter \i2 at least in the range of their engineering design 
values. The simple formula 

— «1 + -^    with     Rv=l 
o- hB 

is a good approximation and in fact a lower bound by comparison with a 
Finite Element Analysis (Vidonne 1995). 

■— 

* 

0 12 3 4 

ha/hb 

Fig. 3 Damage equivalent stress function of the design parameters 
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Having a*, damage mechanics provides conditions for crack reinitiation. 
Assuming the material of the layer B to be quasi-brittle, that is elastic at the 
macro-scale but elasto-plastic and damageable at the micro-scale, a two 
scales micromechanics analysis of an elasto-plastic and damageable 
inclusion embedded in an elastic matrix gives the following kinetic law of 
evolution of the isotropic damage D (Lemaitre 1992): 

2ES 
±(l + v) + 3(l-2v) 

V°f/ 
-eq if Seq^D 

D = Dc < 1 —»mesocrack initiation 

\% where the accumulated strain rate eeq = (^eje?)   may be replaced by its 
value as a function of the von Mises stress rate through the law of 
elasticity: 

21 + vi.   i 
Eeq       3 -eq|' 

CTf is the fatigue limit of the material, eD a damage threshold taken here as 
equal to zero, and S a damage strength of the material. Then, 

-(1 + V) + 3(1-2V)PH D = ^l 
3E2S 

'eq • 

Using the rough approximation a* = aM(l + hA/hB) which corresponds to 
a one dimensional state of meso stress at the tip of the debonding x, = 1D 
(but a three dimensional state at the microscale): 

'eq 

P_<4(l + vB) 
J^B^B 

|(l + vB) + |(l-2vB) 
>IB h ■By 

This formula shows that a low damage rate dD/da^ is obtained if: 
- the thickness of the uncracked layers hB is large in comparison to the 
thickness hA of the cracked layer (this is the case of a coated system), 
- the elasticity modulus EB and the damage strength SB of the uncracked 
layer material are large but if its fatigue limit affl is low. 
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The conditions of a crack reinitiation are derived from the integration of 
this damage rate equation for any history of loading G„(t). 

* Case of static loading 

An obvious integration gives the critical remote stress af corresponding to 
the mesocrack initiation D = Dc as the solution of: 

f 
,C3 

f(l + vBK+A(l-2vB)- 

A 
1 + ^ 

h Bj 

'fB 

hi 
hr 

1 + fA-  =Dr 

with the same qualitative conclusions to maximize a£ as to minimize the 
damage rate dD/dc^. 

* Case of fatigue loading 

Consider a periodic loading defined by 0 < o„ < OLM which induces 
fatigue of the layer B after debonding of the interface. From the damage 
rate equation, the damage per cycle is : 

8D_g^(l + vB) 
8N •J^B^B 

f(l + vBKM+^(l-2vB) °-{i+t] 
'fB 

1 + V 
hn 

and the number of cycles NR to reach a crack reinitiation corresponding to 
D = Dc is 

NR=- 
JJ^B^B^C 

<4(l + vBP + ^ 
'By 

|(1 + VB)O-M+|(1-2VB)- 

~M h 

\2 

By 

'fB 

This result where the number of cycles to crack reinitiation is a cubic 
inverse function of the stress amplitude may be not quantitatively realistic 
but it shows the main trends of the influence of the design parameters to 
obtain a crack retardation defined by NR as large as possible. 
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5. Conclusion 

The dream of the good designer of multimaterials relating to crack arrest or 
crack growth retardation is alive if: 

- the possible cracked layer has a small thickness in comparison to its 
substrate, 

- the elasticity modulus and the damage strength of the substrate are large 
but its fatigue limit is low, 

- the debonding length of the interface which immediately follows the 
crack reaching the interface is of the order of magnitude of several 
thicknesses of the crack layer, it decreases if the debonding shear stress 
increases but is not much influenced by the modulus of elasticity of the 
layers and by the shear modulus groups as GJE^/EAEB . 
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1. Introduction 

Asymptotic solutions of the stress and strain fields near the tip of a steadily advancing 
crack in an elastic-plastic solid, have been worked out by Slepyan (1976) for Mode n, 
and by Gao and Nemat-Nasser (1983a,b, 1984) for all three fracture modes, as well as 
for elastic, power-law hardening (elastic-plastic) material models; see also Nemat- 
Nasser and Obata (1990). Adiabatic shearbands in similar model materials have been 
examined analytically, mostly as one-dimensional problems; see, for example, Clifton 
etal. (1984), Wright and Batra (1985), Wright and Walter (1987), Burns (1990), Walter 
(1992), and Olmstead et al. (1994). There are many features in common between a 
dynamically growing crack and an advancing adiabatic shearband in an elastic-plastic 
solid. Here, some of these are briefly examined, focusing on near-field asymptotic solu- 
tions of these problems. Of particular interest is the effect of the assumed constitutive 
model on the structure of the asymptotic solutions, especially the nature of the tempera- 
ture field. 

It turns out that the near-tip asymptotic solution of a steadily advancing crack or 
adiabatic shearband, critically depends on the manner by which the material's flow 
stress may depend on temperature and strain rate. For a perfectly plastic model, the 
strain and temperature will be logarithmically singular, as the tip is approached. Similar 
results hold when the flow stress is power-law hardening, but assumed to be indepen- 
dent of the strain rate and temperature. On the other hand, if the flow stress is assumed 
to depend on temperature, all field quantities will be regular near the tip of the crack or 
shearband. The situation again changes if the flow stress is assumed to depend on strain 
rate by a power law, but remains independent of the temperature and strain. The field 
quantities   now   become   power-law   singular.    If,   in   addition   to  the   strain-rate 
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dependency, the flow stress also depends on temperature, the asymptotic near-tip solu- 
tion again becomes regular. The paper therefore demonstrates how important the 
assumed constitutive model is in defining the most essential structure of the correspond- 
ing solutions. 

2. Basic Equations 

2.1. FIELD EQUATIONS 

As a unified approach, consider the field equations common to both the dynamic crack- 
growth and adiabatic shearband problems. These are the equations of linear momentum 
and energy, namely, 

V.o = p-g-,     pc-d-t = kV2T + Wp, (1,2) 

where a is the Cauchy stress, p is the mass-density, v is the velocity, T is the tempera- 
ture, c is the heat capacity, k is the conductivity constant, and Wp stands for the rate of 
plastic work per unit current volume. In terms of the plastic strain rate (deviatoric), eP, 
this work is given by Wp = a: eP. 

2.2. CONSTITUTIVE RELATIONS 

For the constitutive relations, we consider an elastic-plastic model, and examine various 
flow-stress relations. The plastic strain rate, eP, is defined by 

EP = Y<J72T, (3) 

where a' is the deviatoric stress, and 

Y = (2eP:eP)'/2,    % = (± &:&)*, (4,5) 

are the effective plastic strain rate, and the effective stress, respectively. The flow stress 
is a relation between T, y, and temperature T. We consider five different cases, as fol- 
lows: 

k° perfect plasticity 
koY1/n power-law hardening 
kog(T) thermal softening (6) 
j^Ym strain-rate hardening 
koYmg(T) more general. 

In this work, we confine attention to a simple case where g is a linear function of tem- 
perature, 

g = (l-aT). (7) 
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This may be viewed as the two leading terms of the Taylor expansion of an exponential 
function of temperature, g = exp{-aT}, where a is generally very small, i.e., 
a = O(K)-4). 

In view of (3-5), note that the rate of plastic work becomes 

WP = G:EP = TY^0. (8) 

3. Steady-State Solution 

When the shearband or crack is advancing in the direction of, say, the xi-axis, see Fig- 
ure 1, at a constant velocity V, the material time derivative becomes 

(9) 
dt -    v 3x ' 

and the basic equations in the moving coordinates (x, y), become 

V.a = -pv£, 

_pcV-^=kV2T + XY. 

We now examine the structure of the solutions of these equations with k = 0 (no heat 
conduction), in a region r0 < r < Ro close to the tip of the running crack or the shear- 
band. We compare these solutions for the five flow stress models of (6). 

(10) 

(11) 

*2 

Vt 

x + Vt" 
Xl, X 

Figure 1. The coordinate systems for steadily growing crack or shearband: 
X!, x2 are the stationary, and x, y are the moving coordinates 

3.1. THE T<ko MODEL 

Normalize the flow stress using ko as the unit of stress. Then, x = 0(1). From (5,10) it 
follows that 9v/9x = 0(1/r), so that y = 0(1/r), where r measures length from the tip of 
the shearband or the crack. From this and the incompressibility condition, it now fol- 
lows (Gao and Nemat-Nasser, 1983a) that the strain and strain rate have the form 
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e = 0(ln(Ro/r)),    e=0(l/r). (12,13) 

From (11) with k = 0, it now is deduced that 

T = 0(ln(R0/r)). (14) 

Hence, according to this model, the temperature field must have a logarithmic singular- 
ity at the tip of the running crack or shearband. Zehnder and Rosakis (1991) report 
sharp variations in the temperature field ahead of a running crack, which seems to sup- 
port this result. For this case, Gao and Nemat-Nasser (1983a) provide detailed solutions 
for the stress and deformation fields based on this model, and give illustrative examples 
for all three fracture modes; see also Hori and Nemat-Nasser (1989). For Modes I and 
II, they show that the conditions of the non-negative plastic work lead to the existence 
of a stress discontinuity at certain angles, ± 8*, while the strain field remains continu- 
ous; for a systematic development of the field variables across a moving discontinuity in 
an elastic-plastic material; see Nemat-Nasser and Gao (1988). Recent finite-element 
calculations by Varias and Shih (1995) seem to support the existence of the stress 
discontinuity. 

3.3. Power-law Hardening 

Similar results are obtained when a power law work-hardening is assumed. Consider 
the stress-strain relation defined by 

Y=T/E + c0(T-T0)n, (15) 

where E is the Young modulus, Co and to are material constants, and n is the work- 
hardening exponent. This is equivalent to the power-law hardening given in (6). Then 
the strain, stress, and temperature fields are singular as follows: 

Y = 0(ln(Ro/r))n/(n- D,     x = 0(ln(Ro/r))"(n- D, 

T = 0(ln(R<>/r))<n + »'fe ~ ». (16-18) 

These results can be verified starting with the basic field equations and following the 
procedure outlined in Gao and Nemat-Nasser (1983b). 

3.4 THE x < kog(T) MODEL 

When linear temperature softening is assumed, the structure of the solution changes 
completely. In this case, the yield condition 

T = ko(l-aT) (19) 

shows that x = 0(1) and T = 0(ln(Ro/r)) are not consistent. Assuming v = 0(rN), from 
(10) and (11), with k = 0, it follows that N = 0. Hence the leading terms in the field 
quantities are all functions of the angle 8 only. There is no singular dependence on the 
radial distance, r, from the crack or shearband tip in this case. 
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3.2 THE x < koYm MODEL 

Set v = 0(rN) and note that the field equations then take on the following form: 

v = rNV(9),    <y = rNS(9), 

x = rNS(0),    y = rN/mr(9), 

T _ rN((m + l)/m) +1 p(0) (20-25) 

From the field equations, it now follows that 

N = -m/(l-m), (26) 

for this case. Note that, this leads to a weak temperature singularity, when m is small, 
i.e., 

T = 0(l/r2ra). (27) 

3.5 THE x < koYmg(T) MODEL 

This is the model used by Wright and Walter (1996). Using expressions (20-25) in the 
field equations, together with the flow stress, x = koYmg(T), it follows that 

N = m/(l+m). (28) 

From (28), it is seen that there is no singularity in this case. Thus, this model does not 
seem to accord with the temperature field measured by Zehnder and Rosakis (1991) for 
the running crack. 
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DYNAMICALLY GROWING SHEAR BANDS IN METALS: 

A STUDY OF TRANSIENT TEMPERATURE AND 
DEFORMATION FIELDS 
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1. Introduction 
The objective of our work is (1) to establish the critical conditions 

for initiation and growth of shear bands in pre-notched plates subjected 
to asymmetric impact loading (dynamic mode II, see Fig. 1); and (2) to 
investigate and characterize the transition in the modes of failure when 
such plates are subjected to a variety of loading rates (impact velocities). 
These failure modes which may feature either dynamic shear band growth, 
dynamic crack propagation or both, (see Fig. 1), have been observed in 
structural materials such as the high strength steels and heat-resistant ti- 
tanium alloy considered in the present work. The approach is to study 
both the dynamic mechanical deformations and the processes of heat gen- 
eration and thermal softening. This necessitates the simultaneous use of 
high speed optical and infrared diagnostics in the experiments. In parallel 
to the experimental study, full-scale thermomechanical finite element sim- 
ulations are conducted to assist the development of criteria for shear band 
initiation and propagation. The calculations make use of constitutive pa- 
rameters measured in house through material testing in a variety of strain 
rates. Such a combined experimental and numerical approach enables us to 
make direct comparisons between measurements and predictions obtained 
using various material constitutive and failure models. 

2. Results 
Materials studied include C-300 (a high strength maraging steel), Ti- 

6A1-4V and HY-100. However, C-300 has so far been the primary material 
of focus. Experiments and numerical simulations have shown that there 
is a strong dependence of temperature increase and speed of shear band 
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FIG. 1 ASYMMETRIC IMPACT CONFIGURATION AND FAILURE MODES 

propagation on loading rate or impact velocity, as demonstrated in the 
results summarized below. 

2.1 Temperature Rises 

Figure 2 shows the measured temperature field generated by a prop- 
agating shear band in a C-300 specimen, The 3-D contour plots reveal 
the spatial structure of the temperature field generated by the propagating 
shear band. The spike in the middle indicates the location of the band. 
The width of the zone of intense heating is approximately 200-300 /im. 

Figure 3 is a summary of the maximum temperatures observed in- 
side propagating shear bands corresponding to different impact velocities 
for C-300 and Ti-6A1-4V. Clearly, the maximum temperatures increase 
monotonically with the impact velocity for both materials. For C-300, the 
highest temperature observed approaches 1700 K (1,427 °C) or 90% of its 
melting point. This is the first time that such high shear band tempera- 
tures have ever been measured in a laboratory setting. The temperatures 
observed here for the C-300 steel are substantially higher than previously 
reported by Duffy and Chi (1992) for shear bands in other types of steels. 
Also, these temperatures are substantially higher than those predicted by 
previous finite element analyses of the shear banding process. The data 
in the plot demonstrate a strong dependence of the maximum shear band 
temperature on the loading rate or the impact velocity. 
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FIG. 2 TEMPERATURE PROFILE AROUND A PROPAGATING SHEAR BAND 
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FIG. 3 MAXIMUM TEMPERATURE AS A FUNCTION OF IMPACT VELOCITY 

2.2 Shear Band Propagation Speed 

The speed of shear band propagation is studied using high speed pho- 
tography at framing rates up to 2 X 106 frames/second. Shear band speed 
histories during tests at three different impact velocities are shown in Fig 
4. The shapes of curves indicate that the shear bands do not propagate 
at constant speeds.  The speed is lower initially and reaches a maximum 
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FIG. 4 SHEAR BAND SPEED HISTORIES FOR C-300 
AT DIFFERENT IMPACT VELOCITIES 

for each of the impact velocities. The highest speed observed is close to 
1,200 ms-1. This value is the highest shear band speed ever recorded in a 
laboratory environment and is approximately 38% of the shear wave speed 
of C-300 steel. The dependence of the shear band speed on impact veloc- 
ity is shown in Fig. 5. Both the maximum speed and the average speed 
measured for each impact velocity are shown. This figure clearly shows a 
dramatic increase of shear band speed over a short region of impact ve- 
locity. The minimum impact velocity required to initiate a shear band is 
approximately 20 ms-1. The shape of the curves indicates a tendency to 
saturate by shear band speed with further increase in impact speed. The 
strong dependence of shear band speed on impact velocity at lower impact 
velocities and the tendency to saturate at higher impact velocities observed 
in the experiments have also been predicted by the boundary layer solution 
of Gioia and Ortiz (1995). 

The results shown in Figs. 3-5 also demonstrate that higher speeds cor- 
respond to higher rates of deformation and therefore translate into higher 
temperatures within the shear bands. 

3. Numerical Simulations 
Finite element simulations of the experiments are carried out using 

a coupled thermomechanical finite deformation formulation of LeMonds 
and Needleman (1986) and Needleman (1989). The effects of strain and 
strain rate hardening as well as thermal softening are accounted for. The 
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FIG. 5 SHEAR BAND SPEED AS A FUNCTION OF IMPACT VELOCITY, (C-300) 

adjustable parameters used in the constitutive law have been obtained 
in house by means of extensive constitutive testing using Hopkinson bar 
experiments. Full details can be found in Zhou et al. (1996a,b). 

3.1 Shear Stress 

Figure 6 shows the distributions of shear stress a\2 at two different 
times after impact. The impact velocity is 25 ms-1. This is an intermediate 
velocity at which both shear banding and fracture are observed in the 
experiments, as illustrated in Fig. 1. The existence of a severe shear 
stress state (mode-II conditions) is seen. This loading is responsible for the 
initiation and propagation of shear bands. The simulations show that the 
initiation of the shear band occurs at approximately 22 ßs. This initiation 
time corresponds to the activation of a critical equivalent strain criterion 
in Zhou et al (1996b). After the critical strain is reached in a particular 
element, the stress-carrying capability of the material is assumed to follow 
that of a Newtonian fluid, carrying both a hydrostatic pressure component 
and a viscous stress component. The use of such a constitutive relation 
for materials inside the shear band is motivated by their ability to sustain 
pressure, by the continued dissipation through deformation and frictional 
forces and by the high temperature values (90% of the melting point of 
C-300 steel) observed in the experiments as discussed above. 

The calculated time of initiation is consistent with the initiation time 
observed in experiments at this impact velocity by Zhou, Rosakis and 
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Ravichandran (1996a). The detachment of the area of intense shear stresses 
indicates the propagation of the shear band. As the shear band propagates 
the size of the area in front of the band tip, where intensive shear exists, 
increases and reaches a maximum at approximately 44-45 fis. The size of 
this area and the intensity of the shear stress inside it decrease gradually 
following this point. By 65 fis, the shear mode of loading in the shear band 
tip region has ceased to exist, (not shown). As a result, the shear band 
decelerates and eventually arrests. The calculated shear stress level in the 
area in front of the tip is approximately 1.3 GPa. This is in accord with 
the estimate of Mason, Rosakis and Ravichandran (1994) based on CGS 
interferometry and a line plastic zone model. The calculation also captures 
the initiation of a crack from the tip of the arrested shear band later in the 
deformation. For details, see Zhou, Ravichandran and Rosakis (1996b). 

t=24jis t=44ns 
c,„[MPa] 

45      SO      55      60      65      70     75 
[mm] 

(a) 

45      50     55     60      65      70     75      80      85      90 
[mm] 
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FIG. 6 SHEAR STRESS DISTRIBUTIONS DURING SHEAR BAND PROPAGATION 

3.2 Shear Band Length Histories 

Figure 7 is a summary of the calculated length histories of propagat- 
ing shear bands at three impact velocities. The corresponding experimental 
results are also shown. Clearly, these two sets of results are in good agree- 
ment. The curves show a dramatic increase in the length and speed of shear 
band propagation with increasing impact velocity. In addition, the profiles 
indicate that the shear band speed is lower initially. It increases and reaches 
a maximum at approximately 45 /is. This corresponds to the time when 
the size of the area of intense shear stress in front of the shear band tip is 
maximum. The speed decreases after 45 /zs. While the calculated curves 
show slightly more variations in band speed over the course of propagation 
under each impact velocity, the calculated average speeds match the aver- 
age speeds measured in experiments. Also, both the calculated curves and 
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the measured curves show the same dependence on impact velocity. Fur- 
thermore, the calculated and the measured curves clearly demonstrate that 
the duration of shear band propagation is between approximately 20-60 /is 
after impact, consistent with the experimental observations. 
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Figure 8 compares the calculated temperature profiles and the cor- 
responding profiles measured in experiments. The profiles correspond to 
temperatures in the middle of the shear bands. They are obtained by focus- 
ing a detector at a point 3 mm in front of the notch tip before impact. For 
details, see Zhou et al. (1996a). During the deformation the shear band 
tip propagates toward and passes through the point of observation. The 
temperature profiles discussed here are the temperature histories recorded 
by that detector. Each profile shown corresponds to a particular impact 
velocity. Temperature profiles at two impact velocities (25 ms-1 and 30 
ms"1) are shown. Both the experimental profiles and the calculated profiles 
show relatively slow initial increases followed by quicker increases, consis- 
tent with the distribution shown in Fig. 2. There is a good agreement 
between the measured and the calculated curves. The curves show higher 
temperatures and higher rates of increase for higher impact velocities. 

3.4 Shear Band Toughness 

There is a need to characterize material resistance to the initiation 
and propagation of shear bands. The concept of a shear band toughness 
was recently proposed by Grady (1992). A realistic understanding of the 
issue calls for the study of the energy required for band initiation and 
propagation. The generalized J-integral for dynamic conditions (Moran 
and Shih, 1987a,b) is used in the analysis here. 

Since the size of the area with large plastic deformation is relatively 
small (small scale yielding), J can be regarded as a measure of the driving 
force for shear band propagation. In Fig. 9, the instantaneous J value is 
plotted as a function of instantaneous shear band speed for the four impact 
velocities. Although the data show a certain amount of scatter, a univer- 
sal trend of increasing J with increasing shear band speed is observed. It 
should be noted that the data forming this universal curve correspond to 
four calculations which involve drastically different shear band speed his- 
tories. This may point to the existence of a material-dependent relation 
between driving force (J) and instantaneous shear band speed. Beyond 
a shear band speed of approximately 500 ms-1, the driving force (J) ap- 
pears to reach a saturation value equal to approximately 250 KJm-2. The 
value of J at initiation (approximately 100 KJm-2) is consistent with that 
measured by Mason et al (1994) using CGS interferometry. The results 
presented here are only an initial attempt to approach the issue of shear 
band toughness by suggesting a possible correlation between a measure of 
the driving force and shear band propagation speed. Further analyses are 
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certainly needed in order to achieve a better understanding of material 
resistance to the initiation and propagation of shear bands. 

4. Conclusions 
Controlled shear band initiation and propagation are obtained by using 

the stress and deformation fields at the tip of an asymmetrically impact- 
loaded notch as a trigger. Temperature fields around propagating shear 
bands and the speed of shear band propagation are studied experimen- 
tally and numerically. Both the experiments and the numerical simulations 
demonstrate strong dependences of shear band temperature and speed of 
propagation on loading rate or impact velocity. There is a good agree- 
ment between the measured and the computed temperature profiles and 
shear band speeds. Pull details of this work can be found in Zhou et al. 
(1996a,b). Related work on double notch C-300 specimens is described in 
Zhou et al (1996). 
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1.   Introduction 

Solids deforming at high rates often develop narrow layers of intense shear- 
ing. The realistic modeling of these problems requires consideration of large 
plastic deformations, rate sensitivity, hardening, heat convection and con- 
duction, thermal softening and inertia effects. Fully nonlinear multidimen- 
sional solutions to problems of this nature are rare (see Wright and Walter, 
1994, for a notable exception). However, the thinness of the shear layers 
of interest here makes possible certain approximations in the governing 
equations which facilitate the analytical characterization of the flow. The 
systematic use of these approximations results in a much simplified set of 
boundary layer equations which, in some cases, lend themselves to analyti- 
cal treatment. 

Gioia and Ortiz (1996) have applied boundary layer theory to the deter- 
mination of the two-dimensional structure of dynamic shear bands in ther- 
moviscoplastic solids. They specifically consider the case of a plate which 
is impacted upon by a flat-ended, rigid projectile, but other geometries can 
also be treated within the theory. When the impact velocity is sufficiently 
high, a sharp shear band is often observed to propagate deep into the plate 
from the edge of the impactor. For instance, Wingrove (1973) studied the 
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penetration of 2014-T6 aluminum alloy plates by flat-ended projectiles. In- 
tense shear bands were observed to be punched through the thickness of 
the target from the corner of the penetrator, causing a plug to form. Shear 
bands of a similar character were reported in 70-30 brass by Craig and 
Stock (1970) at impact velocities of 300 m/s. The same essential geometry 
arises in pre-notched plates dynamically loaded in shear by an impactor 
which strikes near the notch (Kalthoff, 1987; Kalthoff and Winkler, 1987; 
Mason et al., 1994; Zhou et al, 1996). 

In the steady-state case, the boundary layer equations can be reduced 
to a system of ordinary differential equations by the introduction of a sim- 
ilarity variable. The reduced governing equations can then be integrated 
numerically by a standard shooting method, leading to a full characteriza- 
tion of the the velocity, stress, temperature and plastic work fields. Interest- 
ingly, the existence of steady-state solutions is found to place restrictions 
on the material parameters which can be interpreted as stability condi- 
tions. Transient solutions can also be formulated by a natural extension of 
the similarity methods developed for the steady case. The region where a 
critical value of the plastic work is exceeded is found to define a narrow 
shear band whose 'tip' moves away from the origin at constant speed. This 
shear band tip speed is found to be greatly in excess of the impact velocity, 
in agreement with the observations of Zhou et al. (1996). The ratio of the 
tip speed to the impact velocity rises steeply as a function of the latter at 
low impact velocities, also in keeping with the observations of Zhou et al. 
(1996), and saturates at high impact velocities. 

The results presented in the present paper are extracted from the article 
of Gioia and Ortiz (1996). The reader is referred to the original publication 
for further details. 

2.   Boundary layer equations 

Under certain conditions, the plastic flow of solids may be expected to be 
confined to layers which are thin relative to all other geometrical dimensions 
of the problem. The thinness of the layer makes possible certain approxi- 
mations in the governing equations which facilitate the characterization of 
the flow within the layer. For fluids, the hypothesis that viscosity effects are 
significant only in narrow layers, the thicknesses of which approach zero as 
the Reynolds number increases to infinity, was advanced by Prandtl (1904), 
who also proceeded to compute the simplified boundary layer equations of 
motion. 

Gioia and Ortiz (1996) have formulated similar approximations for ther- 
moviscoplastic solids. As in Prandtl's original work, the aim is to character- 
ize solutions which are rapidly varying in one direction, while being slowly 
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varying in the remaining orthogonal directions. As an illustration of how 
such deformation fields may arise in solids, consider a plate impacted on 
one side by a flat-ended impactor traveling at speed U, Fig. la. Let the Xi 
axis point into the plate from the edge of the impactor, and x2 be the or- 
thogonal direction within the plane of the plate. Imagine cutting the plate 
along the x\ axis so that its top and bottom parts can slide freely rela- 
tive to each other. If the material is further idealized as rigid-plastic in the 
manner outlined in the foregoing, the impacted portion of the plate will 
move rigidly with velocity U, Fig. lb. Evidently, the resulting velocity field 
is incompatible along the X\ axis. If U is sufficiently large, we expect com- 
patibility to be restored through the development of a thin layer of shearing 
deformation, or boundary layer, Fig. lc. 

The equations which determine the structure of boundary layers in ther- 
moviscoplastic solids can be obtained by recourse to a scaling argument. 
The result is (Gioia and Ortiz, 1996): 

Vl,t + n «1,1 + V2 «1,2 = ft-1Sl2,2 + P,l (i) 

P,2 = 0 (2) 

«1,1 + «2,2 = 0 (3) 

il2 = \*l,2\n-1h,2Ü*& (4) 

W,t+VlW,1+V2W,2=V$i2Vl,2 (5) 

-92,2 = 7d 5i2 «1,2 (6) 

q2 = §P |0,21*-1^ (conduction) (7) 

0q (6,t +v1 0,i +v2 0,2 ) = % si2«i,2       (convection) (8) 

In accordance with the flow character of the solutions to be sought, an eu- 
lerian description of the motion is adopted. Elastic strains are assumed to 
be negligible compared to plastic deformations, and the plastic flow to be 
volume preserving. Asymptotically, either conduction or convection must 
dominate asymptotically to the exclusion of the other. Which mechanism 
dominates depends sensitively on material parameters. In the above equa- 
tions, Vi is the eulerian velocity field; S;J the stress deviator; p the hydro- 
static pressure, which we shall take to be positive in tension; w is the plastic 
work, which is identified as the sole state variable describing the state of 
hardening of the solid; 0 is the absolute temperature; & the heat flux vec- 
tor; q is an exponent characteristic of the variation of the heat capacity 
with temperature over the range of interest; I, n and m are the thermal 
softening, strain hardening and rate sensitivity exponents, respectively; the 
exponent p characterizes the variation of the thermal conductivity with 
temperature over the range of interest, and k is a thermal conductivity ex- 
ponent. Commas are used to denote partial differentiation. In writing the 
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Figure 1. Thought experiment illustrating the formation of an internal boundary layer 
in a solid, a) Pre-notched plate impacted by a flat-ended projectile; b) incompatible free 
flow obtained by cutting the solid; and c) internal boundary layer across which continuity 
of velocities is restored. 

boundary layer equations, the following normalization is adopted: 

xi x2 -     Ut -       il> 
Vl (9) 

v2 = 
V2 

J7' 

w 
w w e = r 512 = ^' P=-^P-        (10) 
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whence the dimensionless TZ,V,Td and % numbers arise. In particular, the 
dimensionless number 

* - «£, (") 
plays the role of a generalized Reynolds number. Indeed, in the newtonian 
case, which is recovered by setting m = l,n = I = 0, TZ reduces to UL/u, 
where v is the kinematic viscosity. This is the conventional definition of the 
Reynolds number for newtonian fluids. The asymptotic regime in which the 
boundary layer equations apply is that of very high Reynolds numbers. 

3.   Steady similarity solutions 

Similarity methods (Rosenhead, 1963) constitute a powerful tool for obtain- 
ing semi-analytical solutions of the boundary layer equations stated in the 
foregoing. An appealing feature of similarity solutions is that their determi- 
nation requires the solution of a system of ordinary differential equations. 
This system can conveniently be solved by numerical integration, and the 
complete two-dimensional fields recovered. Gioia and Ortiz (1996) have 
considered free flows in which the pressure is uniform, i.e., p j = 0. Free 
flows of the Falkner-Skan type (Falkner and Skan, 1930, 1931), in which 
the pressure gradient varies as a power of x\, can be treated similarly. 

A semi-infinite plate occupying the half-plane i\ > 0 is imparted a 
velocity U on the lower half of the boundary, i. e., on x\ = 0, x2 < 0, Fig. 1. 
Gioia and Ortiz (1996) have obtained solutions to the steady boundary layer 
equations by introducing the similarity variable 

C = x2x^a. (12) 

The normalized stream function, temperature and plastic work fields are 
then expressed as 

j> = xl /(C),        e = x\g(0,        w = xc
1h(C), (13) 

where the functions /, g and h and the exponents a, b and c are to be 
determined. Inserting representation (13) into the boundary layer equations 
and balancing out powers of &\, the following system of ordinary differential 
equations is obtained: 

chf'-afti   =   Vr\f"\, (15) 
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Figure 2. Steady boundary layer in a copper plate impacted by a flat-ended rigid 
projectile. Profiles of a) velocity; b) shear stress; c) temperature, convection-dominated 
solution (dotted line) and conduction correction (solid line); d) plastic work. 

where r = \f"\mglhn and (•)' denotes differentiation with respect to (. In 
the convection-dominated case, the energy equation reduces to 

bg1+qf-afg«g'   =   Tvr\f"\, (16) 

while the characteristic exponents take the values a = l/(m+1), b = c = 0. 
Consequently, both the temperature and plastic work fields are similar in 
this case. By contrast, the shear stress field is not similar in general. The 
convection-dominated case can be treated similarly. 
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Consider, by way of example, the case of a copper plate which develops 
a steady internal boundary layer such as described in the foregoing. Gioia 
and Ortiz (1996) employ a fourth-order Runge-Kutta method to integrate 
(14) from boundary conditions at £ = 0. Integration into the positive and 
negative ^-directions is performed separately based on assumed boundary 
values of /' and /". Simultaneously, (15) and (16) are integrated by the 
forward-Euler method to determine g and h. Since the remote values of 
these functions are known, the integration of (15) and (16) can conveniently 
be effected from the free flow, i.e. from £ = ±oo towards the origin. The 
unknown values /"(0±) are determined iteratively so as to match the remote 
boundary conditions jF'(-oo) = 1 and /'(oo) = 0. Finally, continuity of 
tractions at the origin is achieved by iteration on /'(0). 

The impact velocity U is set at 544 m/s. Lengths are measured in units 
of the characteristic dimension L = U/io = 1.1 mm, which corresponds 
to the gage length over which the reference strain rate is attained for the 
prescribed impact velocity. We take m = 0.2, n = 0.1 and / = -0.1 as 
representative of the early stages of deformation of copper in which the 
material may be expected to behave stably. In addition, we set the Reynolds 
number TZ = pJ72/<r0 = 10, and the dimensionless numbers V = 5, % = 
0.25, and 7d = 1305. We verify that the Stanton number S = %/Td = 
0.000192 is very small. 

The profiles of the similarity solution computed by numerical integra- 
tion at intervals of AC = 0.005 are shown in Fig. 2. As expected, the 
velocity profile effects a smooth transition from its limiting value of 1 at 
large and negative £ to its limiting value of 0 at large and positive £, 
Fig. 2a. The shear stress profile attains a maximum r = 1.34 at £ = 0, 
and decays monotonically but asymmetrically to zero away from the layer, 
Fig. 2b. The convection temperature profile, shown as the dotted line in 
Fig. 2c, diverges to infinity at £ = 0, as expected. However, the conduction 
sublayer renders the temperatures bounded everywhere. The thinness of 
the conduction sublayer relative to the convection sublayer is particularly 
noteworthy. The plastic work distribution also diverges to infinity at £ = 0, 
Fig. 2d. This may be regarded as an artifact of the steady solution. The 
transient solutions presented in Section 4 are devoid of this unphysical be- 
havior. The shear stress and conduction temperature fields predicted by 
the theory are not similar and, consequently, they vary with x\ along the 
centerline x-i = 0. The shear stress decreases downstream monotonically 
as Xi°'33. The temperature exhibits a moderate rise from a value of 733°C 
near the origin to a value of 910°C at 5.5 cm from the root. 

Conditions for the existence of steady boundary layers can be inferred by 
examining the asymptotic form of the solutions near the boundary (Gioia 
and Ortiz, 1996). In the convection-dominated case, existence necessitates 
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m + n + 1 > 0. Since this inequality involves material parameters only, 
it can be interpreted as a material stability condition. Remarkably, this 
result coincides with the stability condition derived by Molinari and Clifton 
(1987) in a one-dimensional setting. In the conduction-dominated case, by 
contrast, it is found that the existence of steady boundary layers requires 
m + n > 0. The effect of nonlocal hardening on stability can be ascertained 
likewise. In the convection-dominated case, existence requires m + l > 0. In 
the conduction-dominated case the nonlocal material is always stable. 

4.   Transient boundary layers 

Gioia and Ortiz (1996) have constructed a class of unsteady boundary layer 
solutions which characterizes the mechanical and thermal fields attendant 
to dynamically propagating shear bands such as develop in impact tests. 
The transient character of the solutions necessitates consideration of the 
full boundary layer equations, with rate terms included. Solutions to these 
equations are obtained by introducing the similarity variables 

C = x2x^a,        £ = tx^\ (17) 

and adopting the representation 

^ = 5?/(CO,       0 = *UCO,       w = xih((,0, (18) 
which generalizes (13). Inserting representation (18) into the boundary layer 
equations and balancing powers of x\ yields the system of partial differential 
equations 

(i-£/*)/,«+£/*/,«-«//»«   =   ks< (19) 

9q[(l-Zf,c)9,i+(-af + ZU)9<]    =    Tysf,cc (20) 
(l-tf*)h,t+(-af + tf,t)h,c   =   Vsf«, (21) 

*=l/,CCrAfisgn(/,cc), (22) 

together with exponents a=l/(m+l),6 = c = 0. Remarkably, the similar- 
ity of the velocity, temperature and plastic work fields is preserved in the 
transient case. Evidently, Eqs. (19), (20) and (21) reduce to their steady 
counterparts when all derivatives with respect to £ vanish. To the boundary 
conditions now one needs to append suitable initial conditions at t = 0. 

The similar transient equations (19-22) provide a convenient framework 
for investigating the transition from stable to unstable boundary layers, 
leading to the formation of a shear band. As a simple model of this transi- 
tion, we assume that the material initially exhibits stable behavior charac- 
terized by a high hardening exponent n, or low thermal softening exponent 
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/, or both, followed by an unstable regime of low—possibly negative—n, or 
high I, or both. The stress varies continuously across this transition. Loss 
of material stability is assumed to occur at a critical accumulated plastic 
work w = wc. The resulting constitutive law is 

At-      im   -nnl <~     \  fm + fi+[> 0,     W < Wc /„„-. 
[m + n+ I < 0,   w > wc 

Conveniently, by virtue of the similarity of the transient solutions the criti- 
cal condition reduces simply to w(C,£) = wc, and all fields retain similarity 
through the transition. At any given time, the locus of points at which the 
material is critical is denned parametrically by the equation 

w(x2x7a ,i xT1) = wc. (24) 

This curve encloses a region of highly deformed unstable material, which 
may therefore be regarded as a shear band. The position of the tip of this 
region, or 'shear band tip,' follows by particularizing (24) to x2 = 0, which 
yields the condition wfijixT1) = wc. This in turn requires tx7l = £c = 
constant, and, consequently, the shear band tip proceeds at the constant 
speed V = £~1. It bears emphasis that the constancy of the shear band tip 
speed is a direct consequence of the similarity of the solution and the form 
(17b) of the time-like similarity variable £, which represents a reciprocal 
speed. The shear band tip speed can be computed simply by integrating 
the transient similar equations until such time £c as the critical plastic work 
wc is attained at £ = 0. It is noteworthy that the shear band tip speed does 
not depend on the form of the constitutive relation in the unstable regime. 

By way of example, consider a copper plate such as described in Sec- 
tion 3. The material parameters are chosen such that m + n +1 = 0.04 > 0 
for w < wc = 5, and m + n + I = -0.06 < 0 for w > wc = 5. The Reynolds 
number is set to 10. The remaining dimensionless numbers of the flow are 
V = 5 and % = 0.25. The transient boundary layer equations are integrated 
in £ by the forward-Euler method. 

The time evolution of the plastic work field is displayed in Fig. 3. It 
should be noted that in all plots the c^-axis scale has been magnified by 
a factor of 2 to aid visualization. The figures clearly bring forth the fully 
two-dimensional and time-dependent nature of the solution. With increas- 
ing time, the level contours of plastic work appear to emanate from the ori- 
gin and to broaden as they shoot downstream, Fig. 3. This type of growth 
has been observed by Needleman (1989) and by Chou et al. (1992) in fi- 
nite element simulations of dynamic shear banding. The plastic work at 
( = 0 attains its critical value wc at £c = 0.113, resulting in a normalized 
shear band tip speed V = ^T1 = 8.84. The boundary of the shear band in 
Fig. 3 coincides with the level contour w = wc = 5. As may be seen, the 
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Figure 3.    Time evolution of the plastic work field. 

shear band emanates from the origin at i = 0 and subsequently propagates 
downstream at the theoretical speed. The remarkable thinness of the band 
is also noteworthy. 

Fig. 4 shows the dependence of the normalized shear band tip speed on 
the Reynolds number and the critical plastic work. It should be carefully 
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Figure 4-    Dependence of the normalized shear band tip speed on the Reynolds number 
and the critical plastic work. 

noted that the shear band tip speeds depicted in Fig. 4 are normalized by 
the impact velocity. The shear band tip speed is seen to be greatly in excess 
of the impact velocity and to increase sharply with the Reynolds number 
at low impact velocities, in agreement with the observations of Zhou et al. 
(1996). At sufficiently high impact velocities, the normalized shear band tip 
speed saturates and appears to tend asymptotically to a constant value. As 
expected, high values of wc have the effect of retarding the propagation 
of the band. It is remarkable that the speed of propagation of the shear 
band tip, denned as the leading edge of the unstable region, follows from 
the theory and is dictated solely by constitutive behavior. In particular, no 
shear band tip equation of motion needs to be supplied. 

5.   Acknowledgements 

This work has been funded by the National Science Foundation through 
Brown University's Materials Research Group on "Micro-Mechanics of Fail- 
ure Resistant Materials." We are grateful to Profs. A. J. Rosakis and G. 
Ravichandran of Caltech and Prof. M. Zhou of Georgia Tech for helpful dis- 
cussions and suggestions and for granting us access to as yet unpublished 
experimental data. 



162 G. GIOIA AND M. ORTIZ 

References 

Chou, P. C, Flis, W. J., and Konopatski, K. L., Shock-Wave and High- 
Strain-Rate Phenomena in Materials, M. A. Meyers, L. E. Murr and K. P. 
Staudhammer (eds.), 657-667, 1992. 
Craig, J. V., and Stock, T. A., J. Aust. Inst. Met, 15, 1-5, 1970. 
Falkner, V. M., and Skan, S. W., Rep. Memor. Aero. Res. Coun. London, 
No. 1314, 1930. 
Falkner, V. M., and Skan, S. W., Phil. Mag., 12 (7), 865-896, 1931. 
Gioia, G., and Ortiz, M., J. Mech. Phys. Solids, 44 (2) 251-292, 1996. 
Kalthoff, J. F., Photomechanics and Speckle Metrology, SPIE 814, 1987. 
Kalthoff, J. F., and Winkler S., Impact Loading and Dynamic Behavior of 
Materials, Chiem, C. Y., Kunze, H. D., and Meyer, L. W., (eds.), 1, Verlag, 
1987. 
Mason, J. J., Rosakis, A. J., and Ravichandran, G., J. Mech. Phys. Solids, 
42 (11) 1679-1697, 1994. 
Molinari, A., and Clifton, R. J., J. Appl. Mech., 54, 806-812, 1987. 
Needleman, A., J. Appl. Mech., 56, 1-9, 1989. 
Prandtl, L., Verh. Ill Int. Math. Kongr., Heildelberg, 484-491,1904. 
Rosenhead, L., Laminar Boundary Layers, Oxford, 1963. 
Wingrove, A. L. (1973) Metall. Trans., 4, 1829-1833, 1973. 
Wright, T. W., and Walter, T. W., "On Mode III Propagation of Adiabatic 
Shear Bands," preprint, 1994. 
Zhou, M., Rosakis, A. J., and Ravichandran, G., "Dynamically Propagating 
Shear Bands in Prenotched Plates," J. Mech. Phys. Solids, 1996 (in press). 



EARTHQUAKES,  FRACTURE,   COMPLEXITY 

DONALD L. TURCOTTE 

Department of Geological Sciences 

Cornell University, Ithaca, NY 14853  USA 

Abstract. Earthquakes generally occur on preexisting faults; big earthquakes occur 

on big faults, little earthquakes occur on little faults. Several important general 

observations are: (1) No systematic observable precursory seismic or aseismic slip 

prior to an earthquake on or near the rupture zone, (2) low stress levels (coefficients of 

friction less than 0.1), (3) earthquakes nucleate on the deepest part of the rupture zone, 

(4) rupture propagates at about 60% of the relevant sound speed, (5) rupture occurs in 

self-healing (Heaton) pulses, (6) background earthquakes in a region satisfy power-law 

(fractal) frequency-size statistics, and (7) the rate of occurrence of background 

earthquakes is essentially constant. The classic approach to understanding earthquakes is 

to apply laboratory derived rate and state dependent friction laws and to model the stick- 

slip cycle on a planar fault embedded in an elastic media. These models give results that 

are generally inconsistent with the observations given above. The fundamental 

differences between theory and observation have led to several new approaches to the 

earthquake problem: 

(1) That high-speed slip on faults results in nonfrictional behavior. One possibility is 

that the fault gouge fluidizes. 

(2) That fault-zone complexity plays an essential role in determining how ruptures 

propagate. This has led to stranded-cable analogies to the role of fault-zone asperities. 

Stochastic time-to-failure models are used for a hierarchical array of elements. 

(3) The earth's crust is considered to be a complex medium with a fractal distribution of 

faults. When stressed the medium is subject to fluctuations which result in fractal 

frequency-size statistics for earthquakes. The generic model for this behavior is an array 

of slider blocks connected to each other and to a constant velocity driver by springs. 
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1.    Introduction 

The classical approach to the understanding of an earthquake rupture is to assume that a 

single preexisting crack exists in an elastic medium. Generally the crack is assumed to 

be planar and it is assumed that rupture on the crack is controlled by friction. 

If the displacement on the rupture surface is prescribed as a function of time and 

space the entire spectrum of radiated seismic waves can be determined along with the 

amount of radiated energy. Usually relatively simple ramp models for displacements are 

specified. Many authors have inverted seismograms to obtain slip histories. These 

studies have shown (Sholz, 1990) that earthquake ruptures propagate at velocities 

significantly less than the relevant sound speed (-60%) and that slip velocities are near 

the maximum allowed values (-1-2 m/s) in large earthquakes. At the same time the 

rupture motion appears to be relatively strongly damped, oscillations do not occur and 

there is little evidence that frictional stresses change sign. 

In the classic analysis of faults the rupture will initiate at one point on the fault 

and will spread across the fault surface. Slip occurs across the entire fault zone until the 

rupture propagation is arrested. However, Heaton (1990) proposed, based on seismic 

inversions, that self-healing pulses of slip occur in earthquake ruptures. This mode of 

rupture was strongly confirmed by displacement inversions for the 1992 Landers 

earthquake (Wald and Heaton, 1994). These pulses are now known as Heaton pulses and 

the two alternative models for rupture displacement are illustrated in Figure 1. 

A variety of observations are relevant to the state of stress prior to, during, and 

after an earthquake rupture. Inversions of seismograms, specifically the "corner 

frequency", give stress drops during rupture. Stress drops can also be inferred from 

surface geodetic observations, before and after an earthquake. These studies indicate a 

stress drop of less than 10 MPa, even in the largest earthquakes (with a few exceptions). 

Absolute stress levels during rupture can be inferred from heat flow measurements. Heat 

flow measurements on the San Andreas fault (Lachenbruch and Sass, 1992) indicate a 

very small heat-flow anomaly associated with friction on the fault and a dynamic 

frictional stress of less than 10 MPa. Direct stress measurements were an important 

component of the Cajon Pass Scientific Drilling Project. The Cajon Pass borehole was 

drilled to a depth of 3.5 km, about 4 km from the surface trace of the San Andreas fault 
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Figure 1. The slip velocity vs is given as a function of position on the fault x at increasing times T. The 

rupture initiates at the black circle. Illustration of two models for the propagation of rupture across a fault, 

(a) The classical picture that rupture expands across the entire fault, (b) Illustration of a healing (Heaton) 

pulse propagating along a fault. 

near San Bernardino, CA. In situ stress orientations and magnitudes were obtained from 

depths of 0.9 to 3.5 km using hydraulic fracturing and well-bore breakout analyses. 

Zoback and Healy (1992) summarized the results of these studies and concluded that the 

San Andreas fault must be quite weak as there was a complete absence of any right- 

lateral shear stress on planes parallel to the fault. One of the reasons for selecting this 

site was that the last major earthquake on this section of the San Andreas was in 1812 

and it would be expected that the shear stress would be near its maximum value. 



166 D.TURCOTTE 

2.    Laboratory Friction 

Since it is generally accepted that essentially all earthquakes occur on preexisting faults, 

it is certainly reasonable to conclude that the "frictional" behavior of faults will control 

the rupture process. Extensive laboratory studies of the frictional behavior of rock 

surfaces and granular rock (fault gauge) have been carried out. These studies have 

provided a general understanding of the dependence of friction on slip velocity and other 

surface characteristics. Velocity weakening is a necessary condition for stick-slip rather 

than stable sliding on a frictional surface. There is general agreement on frictional 

behavior under well-constrained laboratory conditions. 

The simplest approach to the friction associated with earthquakes is the static- 

dynamic model. If the slip velocity is zero, v = 0, the static coefficient fg is applicable; 

if the slip velocity is non zero, v > 0, the dynamic coefficient of friction fj is 

applicable. As long as fs > fj stick-slip behavior is expected. But this model is clearly 

an oversimplification. The next degree of complexity is to have a functional dependence 

of friction on slip velocity; an example is 

f=—&— (i) 

where vc is a characteristic velocity. However, laboratory experiments have shown that 

friction does not immediately adjust to a new slip velocity. This led to the introduction 

of one or more state variables (Ruina, 1983). A typical example with a single state 

variable is (Okubo, 1989). 

f=fo + blog(bi0 + l)-alog(5L+l) (2) 

dö = i.öv (3) 
dt Dc 

where ■& is the state variable and f0, b, b\, a, aj, and Dc are empirical constants. 

The state variable is generally associated with the time dependence of surface 
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adhesion. Dieterich and Conrad (1984) describe the physics as follows: "A change in 

slip velocity produces an immediate change in frictional resistance that is of the same 

sign as the change in velocity. However, as slip progresses at the new velocity, the age 

of the load bearing contacts begins to evolve to a new population with an average age 

that is characteristic of the new velocity". 

The essential question that must be addressed is whether the empirical friction 

laws based on laboratory studies are applicable to actual faults (Scholz, 1990, pp 91-96). 

Of necessity, the laboratory experiments must be carried out at much lower velocities 

(typically 10~6 m/s) than slip velocities on real faults (up to 1 m/s). However, it has 

also been questioned whether the results are applicable in terms of static friction. Based 

on their own experimental results, Beeler et al. (1994) argue that the presently accepted 

friction laws are inadequate to predict real fault behavior. They suggest a much stronger 

time dependence with a "healing" of a ruptured fault to prevent subsequent slip. 

One immediate objection to the rate and state friction law given in (2) and (3) is 

that the friction coefficient is infinite when v = 0, i.e. the static coefficient of friction is 

infinite. This has led some authors to suggest that faults are always slipping at very 

low velocities, a very doubtful suggestion. However, modifications of the friction law 

can be made relatively easily to overcome this objection. 

A much more serious objection to the applications of the laboratory derived 

friction laws to actual faults is the predicted high stress levels and low stress drops. 

Earthquakes often nucleate at a depth of 10 km where the lithostatic pressure is 250 

MPa, a typical static failure stress would be 10 MPa, giving a coefficient of static 

friction f = 0.04 while typical laboratory values are f = 0.6. Recognizing this major 

discrepancy a number of authors have proposed that the low stress is due to a high fluid 

pressure (Byerlee, 1990; Sleep and Blanpied, 1994). This requires an impermeable fault 

zone and several mechanisms have been proposed; but at best, this proposal must be 

considered ad hoc. The stress paradox reinforces other objections to currently accepted 

concepts of friction on faults. 

The rate and state equations predict measurable slip on faults in the interseismic 

period between major earthquakes. Since the lithostatic normal force increases linearly 

with depth, it is also expected that the frictional resistance to slip also increases with 

depth. As the stress on a fault increases during an earthquake cycle it would be expected 
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that slip would occur on the upper portion of the fault while it remains locked at depth 

(Lorenzetti and Tullis, 1989; Rice, 1993). While there are exceptions, observations, 

either directly or geodetically, of such fault offsets are quite rare. The locked northern 

and southern sections of the San Andreas fault are not slipping. On the basis of high 

resolution strain and tilt data Johnston et al. (1987) found no precursory fault 

displacements prior to several earthquakes in California. These authors suggest: "that 

rupture initiation occurs at smaller regions of higher strength which, when broken, 

allow runaway catastrophic failure". 

3.     Alternative  Friction Models 

Many authors have recognized that classic laboratory frictional behavior may not be 

applicable to real faults. And a variety of alternative hypotheses for rupture mechanics 

have been proposed. 

It has been proposed that the granular fault gauge becomes fluidized during 

rupture (Melosh, 1979, 1996). Under rather restricted conditions sufficient energy is 

available to fluidize a narrow zone of fault gauge. Heaton (1990) pointed out that self 

healing "Heaton " pulses are inconsistent with classic friction experiments and suggested 

that fault gauge may become fluidized when a critical slip velocity is exceeded. 

Fluidization could certainly reduce the dynamic friction on a fault but would not be 

expected to reduce the static friction. 

A second approach to dynamic rupture on faults invokes interface waves. Brune 

et al. (1993) and Anooshelpoor and Brune (1994) have proposed interface waves 

involving fault surface separation during slip (Mora and Place, 1994). They also 

suggest that normal interface vibrations associated with these waves can explain the high 

corner frequency. A number of authors have considered the role of normal vibrations on 

friction (Tolstoi, 1967; Comninou and Dundurs, 1977, 1978; Freund, 1978). The 

excitation of Rayleigh waves on a rupture surface can lead to periodic pulses of 

separation. However, this mechanism is controversial and has not been demonstrated 

experimentally in a conclusive manner. 

Several authors have recently included a linear viscous resistance on the slip 

surface (Nakanishi, 1994; Morgan et al., 1996). A Barenblatt cohesive zone is 



EARTHQUAKES, FRACTURE, COMPLEXITY 169 

introduced at the crack tip and this cohesion models the static friction. With a viscous 

resistance to slip on the crack surface, the tip singularity is reduced below the value 1/2 

associated with the classic stress intensity factor and the velocity of crack propagation is 

a function of the crack "viscosity". Rupture always initiates at the same value of the 

cohesive force independent of the viscosity and the rupture velocity increases towards the 

relevant sound speed as the viscosity is decreased. These authors suggest that there are 

two slip-mode regimes during earthquake rupture. In the immediate vicinity of the crack 

tip, slip velocities are small and cohesive forces dominate. This is the regime that has 

been studied in the laboratory; plastic deformation of the surfaces and gauge dominate 

and the "frictional" stress is relatively high. At higher slip velocities, away from the 

crack tip, there is a second frictional mode with low frictional stresses. This second 

mode may be due to acoustic fluidization or separation waves. A linear viscous 

rheology is consistent with the fluidization of fault gauge (Savage, 1984; Campbell, 

1990). As the driving stress drops, the slip velocity decreases, there is a return to the 

cohesive mode, and the fault heals. 

4.    Failure Models 

The approaches given above modify the classic approach to friction, but retain the 

concept of elastic half-spaces on either side of the fault. In fact the crustal rock adjacent 

to faults is fragmented by secondary faults over a wide range of scales. One consequence 

of this complexity is the introduction by seismologists of the concepts of asperities and 

barriers. Asperities often arrest seismic rupture resulting in earthquakes appearing to be 

a sequence of ruptures. Inversions of seismograms indicate there may be sections of 

faults, barriers, on which there is little or no coseismic displacement. A conclusion is 

that faults are rough and complex and stress and strain patterns can be extremely 

heterogeneous. 

In order to model fault heterogeneity Smalley et al. (1985) introduced a 

hierarchical model for the initiation and propagation of failure on a fault. The asperities 

on the fault were treated as individual elements with a probabilistic distribution of 

strengths. If one element failed the stress was transferred to the adjacent element on 

which an induced failure could occur. If two elements failed the stresses were transferred 
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to the two adjacent elements, and so forth. A cascade of failures resulted. 

The behavior of this hierarchical model resembles the failure of a stranded cable 

or a composite material. These applications raise several interesting questions that are 

relevant to the behavior of faults. The first is the extent of load sharing. One extreme 

is the global load-sharing model. If one element fails, the stress on this element is 

transferred to all other elements. This approach is applicable to "stiff systems. A 

laboratory friction apparatus is an example of a stiff system. The second extreme is the 

nearest neighbor stress transfer. In this case a localized cascade of failures can lead to a 

catastrophic failure. Localized stress transfer can lead to considerably lower failure 

stresses than global stress transfer. 

When an element is placed under a stress a there are two approaches to its 

failure. One is to provide the probability than an element will fail under the prescribed 

stress. However, studies of the failure of engineering materials indicate that it is 

preferable to utilize the concept of "time to failure" (Coleman, 1958). The statistical 

distribution of lifetimes at a prescribed stress is given. The occurrence of aftershocks 

supports the application of the time to failure model to earthquakes. The cumulative 

distribution of failure times tf for an individual element is typically given by (Phoenix 

and Tierney, 1983) 

Pr (tf) = 1 - exp (- V tf) (4) 

where v (a) is the hazard rate under stress a. One-half of a large number of wires under 

stress a will have failed when ty2 = (In 2)/v. For a wide variety of materials a Weibull 

distribution of failures is found to be applicable, thus 

v=v 0& (5) 
Vo0 

The hazard rate has a power-law dependence on stress with the power p typically in the 

range 2-5. 

For global load sharing the stress on a failed element is redistributed uniformly 

to all the remaining elements. The stress on the n surviving elements is given by 
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n (6) 

The rate at which elements fail is assumed to be given by the rate law 

<b.= - vn =   Vo n° 
dt npl (7) 

Solving (7) with n = n0 at t = 0 gives 

n = n0(l-pv0t)1/P (8) 

And the time to failure tf is obtained by setting n = 0 with the result tf = (p v0)_1. With 

p = 4 this gives tf = (4 v0)" *■ which is about a factor of two reduction compared with the 

mean failure time of individual elements. 

Numerical solutions of the time to failure model with local load sharing have 

been obtained by Newman et al. (1995). When an element fails, the stress on the 

element is transferred to a neighboring element, if two adjacent elements fail, the stress 

on these elements is transferred to two neighboring elements, if four adjacent elements 

fail, the stress on these elements is transferred to four neighboring elements, and so 

forth. A seventh-order illustration of the model is given in Figure 2; there are 128 

lowest-order elements. 

ill ill ikik Ash. ilk Ü Ü yj ii LkktJ ih ill LLILL LkLbJ 
Figure 2. Illustration of a seventh order (N=128) example of the hierarchical model. 
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In order to accommodate the increase in stress caused by local load sharing from 

failed elements a reduced time to failure is introduced for each element. 

i "• Hf)'* (9) 

where tf is the time to failure under stress (JQ and tfj is the actual time to failure under 

stress a (t). Each element i is assigned a random time to failure tj0 under stress GQ 

based on the distribution given in (4). The actual time to failure of element i, tf j, is 

reduced below tj0 if stress is transferred to the element. The time tf j is determined by 

carrying out the integral in (9) until the condition is satisfied. 

Newman et al. (1995) have carried out a sequence of numerical experiments 

using a 16th order (n = 65,536) realization of this model with p = 4. An example is 

given in Figure 3. The total failure sequence is given in Figure 3a. The 

nondimensional time is taken to be T = v0 t and failure in this case occurs at T = 

0.048027. The failure sequence between T = 0.0445 and failure is illustrated in Figure 

3b. It is interesting to note that there is a well defined sequence of partial failures. And 

for each of these partial failures their is a nested sequence of higher order failures. 

Further expansions would show higher orders of nesting. The structure is basically self- 

similar or fractal; there is a scale invariant sequence of precursory failures at all levels. 

The mean time to failure was found to be 

tf=O048 (10) 
v o 

Comparing this value with the value obtained for global load sharing shows that local 

load sharing reduces the mean time to failure by almost an order of magnitude. This 

could be an explanation for why real faults appear to be weak. 
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Figure 3. Failure sequence for a 16th order (N=65,536) hierarchical model, (a) Entire failure sequence 

(failure is complete at t = 0.048031. (b) Expansion of the final sequence of partial failures. 
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5. Conclusions 

There is a great deal of observational evidence that models for the behavior of faults 

based on laboratory friction law are not applicable. One explanation is that the 

laboratory based models are too restrictive and do not simulate the large time scale and 

relatively high slip velocities on faults. It has been suggested that fault gauge may 

fluidize, that interfacial waves may be important, and that faults may heal. 

An alternative explanation for the discrepancies is the complexity of real faults. 

The complexity is in both the structure of the fault zone itself and in the fragmentation 

of the rock in which the fault is embedded. Stochastic time-to-failure models are an 

alternative approach to the earthquake rupture process. 
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Abstract. Experiments in brittle, amorphous PMMA indicate that the process of 
dynamic fracture is governed by a micro-branching instability. At a critical 
velocity, vc, a single crack undergoes an abrupt, well-defined transition to 
microscopic crack branching. As a result, the velocity of the crack develops 
oscillations, the mean acceleration decreases and structure is formed on the 
fracture surface. Beyond vc the total fracture surface created is a linear function 
of the energy release rate. Micro-branch profiles follow a power law and develop 
into macroscopic crack branching. 

1. Introduction 
The subject of the rapid propagation of cracks in a brittle material is one whose 
roots go back to the early work of Mott [1] over half of a century ago. Since that 
time a great deal of both analytic and experimental work has been dedicated to 
understanding the phenomenon of dynamic fracture, where the behavior of a 
moving crack driven by externally imposed stresses is studied. 

Much analytical progress has been made in assuming that the medium 
behaves according to the equations of linear elasticity [2]. To obtain the equation 
of motion for a single moving crack, one needs to match the fracture energy of 
the material (defined as the energy needed to create a crack of unit length) to the 
energy flux into the crack tip which is supplied by the surrounding elastic fields. 
These theories predict that a single crack should smoothly accelerate until 
reaching a limiting velocity given by the Rayleigh wave speed, VR, of the 
material. The motion of the crack in this picture is dictated by the forms of both 
the applied stresses and the fracture energy in the material. 
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Experiments fail to confirm this idealized picture. The surface created by the 
crack is not necessarily smooth and flat. In brittle materials such as glass, 
ceramics and brittle plastics a characteristic pattern [3] coined "mirror, mist, 
hackle" is observed where the fracture surface progressively roughens as the 
velocity of the crack increases. The velocity of the crack, instead of approaching 
the Rayleigh wave speed, will rarely reach even half of this value [4], with the 
crack eventually bifurcating (or "crack branching") as the energy flow into the 
crack tip becomes sufficiently large. 

An alternative view of the fracture process was suggested by Ravi-Chandar 
and Knauss [5]. In a series of experiments on the brittle plastic, Homolite 100, 
they observed the simultaneous propagation of an ensemble of micro-cracks, 
instead of a single propagating crack. In light of this, they viewed the fracture 
process as a coalescence of micro-voids or defects situated in the crack's path. 
The intense stress field at the crack tip would cause pre-existing defects in the 
material to propagate. Subsequently, increased energy flux to the tip, in this view, 
forms an increase in the number of micro-cracks thereby creating a mechanism 
for enhanced dissipation. As defects exist in most materials, the above picture 
would suggest that crack propagation via interacting micro-voids should, in 
general, occur as a randomly activated process. 

In this paper we will briefly review a series of recent experiments performed 
on brittle PMMA (poly-methyl-methacrylate). The results of these experiments 
offer a different view of the fracture process which complements both of the 
above approaches. The formation and evolution of micro-cracks result from a 
dynamic instability of a moving crack. These experiments show that a sharp 
transition [6] from a state of a single propagating crack to one of an ensemble of 
cracks occurs as the crack velocity increases. Above the critical velocity of 
VC=0.36VR, a single crack undergoes a local change in topology and sprouts 
small microscopic side branches [7]. The dynamics of both the main and local 
branches (micro-branches) are inter-related. As a function of the mean velocity, v, 
these branches will increase in length as the mean dynamics of a crack change 
dramatically; the mean acceleration drops, the crack velocity develops 
oscillations and structure is formed on the fracture surface [6,8]. As the branches 
grow in size, they evolve into macroscopic, large scale crack branches. Thus the 
instability links the behavior of crack branches on both microscopic and 
macroscopic scales. The general nature of this instability is suggested by the 
acoustic emissions [9] of moving cracks in both PMMA and glass where large 
amplitude emissions centered at well defined frequencies appear in both materials 
as the crack velocity surpasses 0.4VR. 

Quantitative measurement [10] in PMMA of the energy flux into the tip of a 
moving crack together with the total amount of surface area created indicates that 
the micro-cracking instability is the main mechanism for the dissipation of energy 
by a moving crack. The rate of new surface creation, beyond vc, is proportional to 
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the energy flux into the tip of the crack. This provides an explanation for why the 
limiting velocity of a crack, the Rayleigh wave speed, is never realized. 
2. Experimental System 

Before reviewing these results we will first briefly describe the experimental 
system. A more detailed description can be found in [6]. The experiments were 
conducted in thin, quasi - 2D sheets of brittle, cast PMMA [11] having a 
thickness (Y direction) of either 0.8 mm or 3 mm with vertical (parallel to the 
direction of applied stress or "Z" direction) and horizontal (parallel to the 
propagation or "X" direction) dimensions between 50-200 mm and 200-400 mm 
respectively. Stress was applied to all samples via uniform displacement of the 
vertical boundaries with the fracture initiated at constant displacement. Applied 
stresses in the experiment were varied between 10-18 MPa. Prior to loading, a 
small "seed" crack was introduced at the edge of the sample midway between the 
vertical boundaries. The sample geometry was varied to provide either steady- 
state crack propagation [10] at a given energy density within the sample, or a 
continuously changing velocity throughout the experiment. 

Steady-state propagation was achieved by using a thin strip configuration 
with the ratio of its vertical to horizontal dimensions between 0.25 - 0.5. If the 
crack tip is sufficiently far from the horizontal boundaries of the system this 
geometry approximates an infinitely long strip with approximate "translational 
in variance" in the direction of propagation. This state is realized when the crack 
reaches a length of about half of the vertical size of the system. At this point, 
advance of the crack by a unit length frees an amount of energy equal to the 
(constant) energy per unit length stored in the plate far ahead of the crack. 

Under these conditions a crack arrives at a state of constant mean velocity 
with G, the energy flux into the crack tip per unit extension of the crack, given by 
G = o^L/(2E) where o is the applied stress at the vertical boundaries, L the 
vertical size of the system and E the Young's modulus of the material [12]. Using 
this geometry we can directly measure G with an 8% accuracy. In the experiments 
described, G was varied between 400-5000 J/m^. 

The crack velocity was measured by first coating the side(s) of the sample 
with a thin (~ 1000 Ä) resistive layer. Upon fracture initiation, a propagating 
crack will cut the resistive coating thereby changing the sample's resistance. We 
measure the resistance change by digitizing to 12 bit accuracy at a rate of 10 
MHz. Thus, in PMMA, the location of the crack tip can be established to a 
0.1mm spatial resolution at O.lusec intervals yielding a velocity resolution of 
better than 25 m/s. 

After fracture, the crack profile in the XZ plane was measured optically with 
a spatial resolution of l-5um depending on the magnification used. Although the 
medium is idealized as 2D, the plates used are of finite thickness. All 
comparisons between local branches and the crack velocity were made using 
branches adjacent to the plane where the velocity measurements were performed. 
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Additional measurements of the fracture surface profiles and surface roughness 
were performed by means of an X-Y scanning profilometer with a resolution of 
0.1 um in the Z direction. Both the optical and profilometer measurements were 
then correlated with the velocity measurements. 
3. Results 

A typical example of the dynamics of a moving crack in PMMA is shown in 
figure 1. After a nearly instantaneous jump to an initial velocity of 0.1-0.2VR a 
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20       40       60       80 

Crack Length (mm) 
Figure 1. Velocity of the crack tip as a function of its length. At the critical velocity of 335110 m/s 
indicated by the arrow, the mean acceleration of the crack slows and the velocity begins to oscillate. 

crack will accelerate smoothly and rapidly until reaching a critical propagation 
velocity, vc, which in PMMA is 335 m/s (or 0.36VR). At that point the mean 
acceleration of the crack drops and oscillations of the velocity are observed 
whose amplitude is an increasing function of the mean velocity. 

Coincident with the onset of the velocity oscillations in PMMA non-trivial 
structure is formed on the fracture surface as shown in figure 2. In the upper half 
of the figure the transition between the featureless "mirror" zone where v < vc to 
the onset of the oscillations where v ~ vc is shown. In the mirror zone there are no 
features at scales larger than lum. The lower half of the figure shows a section of 
the fracture surface where the oscillations in v are well developed and a pattern 
with a "wavelength" on the order of 1mm is formed. On this scale PMMA is 
entirely amorphous. 

Although the pattern observed appears roughly periodic as a function of the 
length of the crack, as the crack tip accelerates the distance between the ribs on 
the surface increases. The observed pattern on the fracture surface is correlated 
with the oscillations in velocity [6]. In figure 3 we present a typical time series 
and power spectrum of the velocity of a crack in steady-state propagation. 
Beyond vc the patterns and velocity oscillations are roughly periodic as a 
function of time with a characteristic time scale of 2-3 usec. Power spectra 
typically show no single sharp frequency although a well-defined time scale is 
apparent. The location of the peak is constant as a function of the mean velocity. 
The oscillation period is an intrinsic time scale, independent of either the lateral 
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dimensions or thickness of the material. Below vc the spectrum has little power 
with no apparent time scale. 

v>vc 
Figure 2. A typical photograph of the fracture surface in PMMA for v < vc (upper left), v~vc (upper 
right) and v > vc (lower figure) where a pattern develops on the surface. In the figure the crack 
propagates from left to right. The pictures are to scale, where the width of the samples shown is 3 

mm. 

The acoustic emissions of a running crack in both PMMA and soda-lime 
glass [9] show similar behavior. Below 0.4VR only very low-level sound 
emission is observed in both materials with large amplitude, peaked emissions 
above that point. In both cases the total acoustic power was approximately 3% of 

0.5 
Frequency (MHz) 

Figure 3. The steady-state velocity of a crack propagating in PMMA beyond vc as a function of time 
(upper), with its corresponding power spectrum (lower). Note the existence of a well-defined time 

scale. 
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the fracture energy. In PMMA, the characteristic time of the acoustic signal is the 
same as in the crack velocity oscillations. Subsequent experiments [8] indicate an 
excellent degree of correlation between the acoustic signals and the 
velocity fluctuations. The quantitative similarity of the acoustic emission spectra 
in both glass and PMMA is a strong indication of the generality of this instability 
as the microscopic structures of the two materials differ substantially. 
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Figure 4. Critical velocity as a function of crack length at the moment of the appearance of surface 
structure, triangles, 1.6 mm wide extruded PMMA surrounded by air; circles, 3.2 mm wide cell-cast 
PMMA surrounded by air; squares, 3.2 mm wide cell-cast PMMA surrounded by helium gas. 

The critical velocity, as determined from profile measurements of the fracture 
surface, is the velocity at which the surface height deviations surpass a threshold 
value (for details see [6]). As figure 4 indicates, the value of vc is independent of 
sample 
geometry, sample thickness, applied stress, surrounding atmosphere and the 
acceleration rate of the crack; whenever the crack velocity surpasses 0.36VR both 
oscillations and resultant surface structure develop. Below vc neither patterns 
nor velocity oscillations are observed. 

We now turn to the mechanism that drives the instability. Optical analysis of 
the near vicinity of the fracture surface reveals, beyond vc, considerable structure 
in the XZ plane. For v > vc microscopic crack branches, as observed [5] in 
Homolite 100, appear. Profiles in the XZ plane both below and above vc are 
presented in figure 5. 

Below vc (Fig 5a), as in the profilometer measurements, the fracture surface 
is entirely featureless to the resolution ( ~ 3um) of our measurements. Beyond vc 

microscopic "daughter" cracks begin to appear. In PMMA micro-branches have a 
minimum length of approximately 10 um. At velocities near threshold, as in Fig. 
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5b, the spacing between branches is relatively large. As the velocity of the crack 
increases, bunches of micro-branches are seen. Within a bunch, the lengths of 

ii    liiii 

Figure 5. Typical examples of micro-branches imaged optically in the XZ plane. All pictures are to 
scale and the path of the main crack in each picture is indicated in white. The arrow, indicating the 
direction of propagation, 0.25 mm in length, (a) v < vc = 330 m/s (b) v = 340 m/s (c) v = 400 m/s 
(d) v = 480 m/s. 

the individual branches in a bunch can vary considerably. The spacing between 
bunches of cracks corresponds to that between velocity fluctuations. For 
relatively high crack velocities (Fig. 5d) the structure of the micro-branches 
becomes increasingly complex. 

In figure 6 we demonstrate that the velocity for the onset of micro-branching 
indeed corresponds to vc, the critical velocity for the onset of both surface 
roughness and velocity oscillations. Although the final crack velocity achieved 
depends on the energy stored in the medium, as the figure indicates, the onset of 
local crack branching is invariant. 

We now turn to the relation between micro-branches and crack dynamics. 
Upon the onset of the branching instability we can no longer think in terms of a 
single crack. To characterize the ensemble behavior, we look at the running 
averages over 5mm of both the crack velocity and micro-branch length. In figure 
7a we plot the mean branch length as a function of the mean velocity. The 
transition to branching behavior is sharp with a well-defined (roughly linear) 
dependence between the mean crack velocity and mean branch length. 

In figure 7b we present measurements of the mean amplitude of the fracture 
surface as a function of the mean crack velocity. As in the case of the branch 
lengths (fig. 7a) the sharp transition at vc from a flat, featureless surface to an 
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increasingly rough surface is evident. Note the difference in scale between the 
700 

Energy Density (normalized) 
Figure 6. The critical velocity for the onset of local crack branching (squares) and the maximum 
velocity achieved (triangles) as a function of the density of the energy stored in the plate prior to 
fracture. The energy density here is normalized by the energy density stored in a plate in which the 
maximum velocity observed was just below the threshold for crack branching. The data shown were 
obtained in 3 mm plates of different sizes and aspect ratios indicating that the branching threshold is 
intrinsic to the material. 

branch lengths and the surface amplitudes with the branch length nearly two 
orders of magnitude larger. 

In summary, the onset of local branching occurs as a sharp transition; beyond 
vc both the mean dynamics of the crack as well as the formation of non-trivial 
surface structure are governed by the generation and growth of local crack 
branching. 

We now turn to the functional form of the micro-branches [7]. As can be seen 
from figure 5, at a given crack velocity the observed lengths of the micro- 
branches are broadly distributed. In figure 8 we superimpose micro-branches that 
were measured at the same mean crack velocity. It is evident from the figure that 
the functional form of these branches is not random but surprisingly well-defined. 
Although the lengths of micro-branches have a wide distribution, a branch, once 
formed, follows a distinct trajectory. A log-log plot (figure inset) of the mean 
profile of the branches shown in the figure indicates that a branch follows a 
power law trajectory of the form: y = 0.20a:0-70 where y is the normal and x the 
direction parallel to the propagation direction of the main crack. The data shown 
were obtained for v = 370m/s = 1.09vc. For crack velocities within 10% of vc the 
superposition of individual trajectories exhibits remarkably little scatter. 
Although the functional form of the mean branch profile remains the same, the 
scatter increases with increasing crack velocity reaching several times the 
measurement uncertainty at velocities 40% over vc. (The scatter for low 
velocities is on the order of the ± 3um uncertainty in the starting point of a given 
branch.) 
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How are micro-branches related to macroscopic, large scale crack branches? 
Consider the branching angle of the crack, defined as the initial angle between a 
branched crack and the direction of propagation of the main crack. Previous 
experiments have observed that the macroscopic branching angle [13] falls in the 
range of 10-15°. Although often observed, a first principles understanding of 
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Figure 7. A comparison of the mean length of micro-branches (a) and the mean amplitude of the 
fracture surface (b) with the mean crack velocity for a number of different experiments. The branch 
length, surface amplitude, and velocity measurements were averages over 5 mm intervals. The arrow 
indicates vc> the transition velocity for the instability. Note both the sharpness of the transition and 
the large different in the scales of the two figures. As in figure 6, the experiments shown were 
performed under different stresses and plate geometries. 

crack branching including a well-defined criterion for the appearance of crack 
branches together with a description of the branching angle is lacking. There are a 
number of predictions for this angle in the literature. The well known Yoffe 
calculation [14] predicts an angle of 60°, branching angles of 30° were observed 
in molecular simulations [15], and an angle of 18° was predicted [16] using an 
energy criterion and considering non-singular terms of the stress field, relevant 
away from the near vicinity of the crack tip. The functional form of the crack 
branch profile suggests that the observed "branching angle" is a function of the 
scale at which an observation is made. 

The power-law form of the micro-branches relates the microscopic and 
macroscopic scales. At scales of 0.1-0.3mm the branching profile would indeed 
produce apparent branching angles that would fall within the range noted in the 
literature as theories based on non-singular terms of the stress field predict. At the 
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smallest scales one would expect the singular terms in the stress field to dominate 
thereby giving rise to large branching angles. The apparent branching angle at the 
smallest scale observed in our experiments (on the order of 5-10 um) is about 30° 
but at still smaller scales we might expect to see a larger angle. The basic 
question of the mechanism causing crack branching, in this picture, reduces to the 
as yet unresolved question of the exact mechanism giving rise to the microscopic 
instability. 
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Figure 8. The superposition of 12 different micro-branches occurring at a mean crack velocity of 
370 m/s. All data were taken in a single XZ plane, (inset) A log-log plot of the mean trajectory 
obtained. The dashed line indicates a power-law fit to the data; y = 0.20-*0-'° . 

How does the local branching process relate to the energy flow into the crack 
tip? Experiments performed in the long strip geometry enable us to measure the 
energy flux (or energy release rate), G, into the crack tip in "steady-state" 
propagation. We can compare this with the total amount of fracture surface 
formed when the surface area formed by the micro-branches is accounted for. 
This comparison is shown in figure 9 for fracture in PMMA where the surface 
area formed is normalized by that which would be formed by a single crack. 
Normalizing G by the energy release rate immediately preceding the formation of 
micro-branches (1.0 x 106 erg/cm2) leads, after an initial jump, to a linear 
dependence between the energy flux into the crack tip and the amount of surface 
area formed having a slope of 1.0 + 5%. This indicates that nearly all of the 
energy initially stored in the plate went into creating new surface. The value of 
the slope yields the constant value for the fracture energy of 5 x 10^ erg/cm2. 
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Figure 9. Total fracture surface including the fracture surface formed by micro-cracks normalized by 
the fracture surface that would be formed by a single crack as a function of the energy flux into the 
crack tip. 

This is surprising in view of the processes that contribute to the fracture energy in 
PMMA. The value obtained for the fracture energy is 3 orders of magnitude 
larger than the value of the surface energy (the energy expended in breaking 
bonds in the material). Most of the energy that goes into the fracture energy [17V 
is expended in complex, rate dependent, processes such as the shearing of the 
long molecules comprising PMMA. A constant fracture energy for v > vc 

indicates that the system somehow balances these different processes against the 
creation of surface area. 
4. Conclusions 

We have found that a micro-branching instability occurs in PMMA where, at 
a critical velocity, .the system undergoes a sharp transition from the propagation 
of a single crack to the production of microscopic branches. The micro-branches 
formed are short-lived, possibly screened from the stress field that drives them by 
the main crack. As a result, the birth and death of these micro-cracks causes 
oscillations in the velocity of the crack "ensemble". 

A possible scenario for these oscillations is as follows. When a micro-branch 
is formed, the total energy flowing into the process zone (or tip area) now must 
subdivide between the two competing cracks. As a result, the overall crack slows 
down. Eventually, the main crack will outrun the daughter crack, screening it 
from the stress field that drives it. As the daughter crack dies, the total energy is 
refunneled into the main crack which accelerates until it, once again, bifurcates 
and the scenario is repeated. The time scale for the oscillations in this picture 
should be governed by the mean "lifetime" of a branch. We can estimate this 
lifetime by means of figure 7a which exhibits a linear dependence between the 
mean length of a branch and the mean propagation velocity of the crack. The 
slope of this graph yields a time scale of 2usec, the typical time scale for the 
oscillations. 
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The micro-branching picture also links together many hitherto unrelated 
aspects of dynamic fracture. As we have shown, the onset of local branching 
gives rise to the formation of structure on the fracture surface. In addition, as the 
micro-branches increase in size the power law form of their trajectory provides a 
link between branching on microscopic and macroscopic scales; essentially 
indicating that the two effects are one and the same. Thus, the onset of the micro- 
branching instability provides a criterion for crack branching. The instability also 
provides an explanation for the long-standing problem of the limiting velocity of 
a crack. As the energy flux into the tip of a crack is increased, more and more 
fracture surface is formed. As figure 9 shows, the amount of fracture surface 
formed by both the main and "daughter" cracks is linearly dependent on the 
amount of stored energy. Thus, although the fracture energy (generalized to the 
total fracture surface formed) is constant in the material, the steady increase in 
the formation of surface area by the crack provides an effective "dissipation" if 
one were to view fracture in a single crack picture. For a given energy flow into 
the system this effective dissipation then limits the velocity attained by the crack. 

The view presented here of the fracture process is similar to that of the micro- 
crack picture proposed in [5], but differs from it in one essential aspect. In the 
micro-crack picture the propagation of a crack is a noise-dominated process; a 
single crack never really exists. A propagating crack is viewed as an ensemble of 
micro-cracks that nucleate from defects or micro-voids that are randomly 
dispersed in the material and are activated by the strong stress field in the vicinity 
of the crack's tip. In the picture presented here, a sharp, well defined transition to 
a branching instability occurs when a single crack dynamically becomes unstable 
and bifurcates. Although, because of pre-existing defects in the material, there is 
certainly a randomness involved, we view the fracture process, as a whole, to be a 
deterministic one. 

The picture presented here is, of course, just a beginning. Much additional 
work remains to be done. Some of the many questions which arise are, for 
example, what is the basic mechanism giving rise to microscopic branching at a 
critical velocity? What determines vc and how general are the effects observed in 
PMMA? Acoustic emission data provide an indication that the instability 
generally occurs in brittle, amorphous materials but what, if any, effects persist in 
more plastic materials or materials that posses a basic structure? 

The authors are grateful to M. Marder for numerous enlightening 
conversations over the course of this work. We also would like to acknowledge 
the United States - Israel Binational Science Foundation (grant no. 92-148) for 
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My purpose in this presentation is to summarize and interpret recent theo- 
retical work by Emily Ching, Hiizu Nakanishi and myself on dynamic sta- 
bility of mode I fracture [1]. Our investigation has been motivated by the 
experiments of Fineberg et al. [5, 6] in which it appears that mode I cracks 
in a variety of materials encounter some kind of oscillatory instability at 
velocities appreciably below the Rayleigh speed. The experiments indicate 
that the instability involves out-of-plane deformations; that is, the cracks 
are unstable against deflection or branching away from their directions of 
motion. We find that a broad class of models of dynamic fracture exhibits 
this kind of instability. Several features of our results appear to contradict 
conventional assumptions in this field. 

Our basic premise has been that we must solve mathematically well 
posed free-boundary problems in order to understand fracture dynamics. 
This means that we must start with physical models that are complete 
enough that the configuration of the system and its state of motion at one 
time are, at least in principle, sufficient to determine the configuration and 
state of motion at all later times. One of our main conclusions is that, 
in carrying out such analyses, it is necessary to include detailed aspects 
of the cohesive mechanism that is acting at the crack tip. Simple far-field 
assumptions, such as the assumption that the mode II stress-intensity factor 
must vanish (Ku = 0), cannot generally be correct. Their range of validity 
includes, for example, the quasi-static situations considered by Cotterell 
and Rice [3], but it does not include the dynamic instabilities observed in 
the recent experiments [5, 6]. 

In all of our work, we have used conventional, cohesive-zone models of 
fracture in continuous, isotropic solids [8, 9]. (Results similar to ours most 
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likely can be obtained with lattice models of the kind studied recently by 
Marder [11], but such calculations almost certainly will be even more diffi- 
cult than those reported here.) In our ideally brittle continuum models, the 
material that is breaking is linearly elastic everywhere outside of sharply 
defined fracture surfaces, and a finite-ranged cohesive stress opposes the 
separation of these surfaces at the crack tip. These models are highly sim- 
plified pictures of the complex, nonlinear processes taking place within the 
process zone near the tip of a real crack; but their simplicity allows us to 
obtain exact analytic results and, from these, to learn what ingredients will 
be needed in more realistic theories. 

The cohesive stress serves two related purposes; it provides the fracture 
energy and it regularizes the stress singularities. A more precise way of 
saying this is that the shape of the cohesive zone is a dynamic entity that 
moves in response to the stresses in its neighborhood. It automatically must 
adjust in such a way that the stresses are nonsingular and continuous at all 
times. Note in particular that the nonsingular stress exactly at the crack 
tip must be the yield stress appropriate for whatever fracture mode, or 
combination of modes, is occurring. 

To specify this situation more precisely, we must define some terms. 
Consider a two-dimensional material — the x, y plane, in either plane stress 
or plane strain — in which a crack is opening along some some trajectory 
whose centerline is y = Ycen{x). Let the functions U$] be the normal 
displacements, relative to the local orientation of the centerline, of the "up- 
per" [+] and "lower" [-] fracture surfaces. Similarly, let the u\. be the 

corresponding tangential displacements. Then 2UN = UN —UN is the 

crack-opening normal (mode I) displacement, and 2Us = UT —UT is the 
crack-opening shear (mode II) displacement. If the crack is bending, then 
Us is a dynamic variable that cannot arbitrarily be assumed to vanish. 

Denote the cohesive traction on the fracture surface by the vector quan- 
tity T,C(UN,US). (Throughout this presentation, all stresses are expressed 
in units 2/i, where // is the elastic shear modulus.) The natural choice for Sc 

is a central force (per unit area) acting between material points on opposite 
fracture surfaces: 

|SC(^,C/S)| = SC(|[/|);      \U\ = y/ü% + Ul (1) 

so that the normal and shear components are 

SCAT = EC(|17|) ^;     ScS = EC(|J7|) ^. (2) 

We have used a model [9] for the magnitude of this central force in which 
Ec(|t/|) is a constant for all opening displacements \U\ less than some range 
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of the forces, and vanishes for larger values of \U\. In this case, we can 
characterize the cohesive zone by just a single parameter, say, the length I 
of the region in which Ec(|i7|) is nonzero. 

There is a simple way to see that detailed properties of the cohesive 
zone, such as the magnitude of the cohesive shear stress EC5, must be 
relevant in fracture dynamics. Suppose, for the sake of argument, that the 
magnitude of Ecs were appreciably less than the central-force value shown 
in (2). In other words, suppose that deformation mechanisms or dissipative 
forces cause the work of fracture to be different in mode II than in mode 
I and, for the moment, consider the possibility that the fracture energy is 
smallest in mode II. Then the crack would be unstable against bending at 
least partially into mode II because it would encounter less resistance in that 
mode. The total energy release, when we account for the fracture energy, 
would increase even if the flow of elastic energy to the tip decreased. A 
further complication is that, as the crack bent toward mode II and lowered 
its fracture energy, it would be further from the Griffith threshold and 
would accelerate. It is not clear what a quasi-static approximation would 
mean in such a situation. It does seem clear, however, that the cohesive 
shear stress must play an essential role in a dynamic stability theory. 

We can push this argument further before considering actual calcula- 
tions. If the crack bends sharply so that the ratio Us/\U\ in (2) is nonzero 
at the crack tip, then Ecs must be nonzero there and must be equal to the 
nonsingular shear stress (related to axes parallel and perpendicular to the 
direction of crack extension) at that point in the elastic material. In princi- 
ple, it is possible that Us vanishes faster than \U\ at the tip; but there is no 
reason to expect that behavior to be a general rule. (It is not.) If the shear 
stress at the tip of a bending crack is not necessarily zero, then it seems 
highly unlikely that any simple far-field prescription such as KJI = 0 can 
be generally correct for dynamic fracture. It might be true for very nearly 
straight cracks, but it cannot be the starting point for a stability analysis. 

To amplify these remarks, I shall devote the rest of this presentation to 
a summary of two new results in fracture dynamics [1]. The first of these 
is neither entirely new nor fully dynamic, but it adds plausibility to the 
second, which is an explicit demonstration that fracture in this class of 
isotropic models is unstable at all nonzero speeds. 

The first result is an analog of the Yoffe analysis [7, 4]. Here, however, 
instead of considering the singular stress fields away from the crack tip, 
we have used the fact that all stresses are nonsingular in a cohesive-zone 
model, and we have looked to see whether the stresses right at the fracture 
surface are acting in such a way as to oppose or amplify deviations in the 
trajectory. Consider a mode I crack moving at steady-state speed v along 
the centerline — the x axis — of a strip of width 2W. For an isotropic, 
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linearly elastic material, we find a relation between the normal (yy) and 
tangential (xx) stresses: 

EM(a;,0)-Sro(a;,0) = Eax(cx))-Sro(c») + i4(t;)[Ew(a;)0)-Ew(oo)]. (3), 

where E^oo) and Ey2/(oo) are the normal and tangential stresses in the 
unbroken material far ahead of the crack tip, and 

(2 - V2/K) (1 - l>*/2) - 2y/(l - t?) (1 - V*/K) () 

A[v)~       V(i-«2)(i-«V«)-(i-«2/2)2 

The quantity K is the square of the ratio of the longitudinal to transverse 
wave speeds, and the crack speed v is measured in units of the transverse 
wave speed. The function A(v) vanishes like v2 near v-0, diverges at the 
Rayleigh speed vR, and is positive and monotonically increasing everywhere 
in 0 < v < VR. 

The relation (3) is valid at all points along the x axis, that is, everywhere 
on the centerline ahead of the crack and everywhere on the fracture surfaces 
including at the tip. Remember that Y,xx{x, 0) is the stress that would open 
a crack moving perpendicular to the x axis and T,yy(x,0) is the stress that 
drives the crack in its original x direction. At the crack tip, ~Syy{xup,0) is 
the yield stress which, under ordinary conditions, is large of order y/W in 
comparison to the external driving stress Ew(oo). Thus, for any moving 
crack, the actual tractions on the fracture surface near the tip strongly 
favor motion away from the original direction of propagation. This result, 
by itself, is an indication but not a proof of instability in this class of 
models. A formula.very similar to (3) was obtained by Rice in 1968 [10], 
and important elements of this interpretation of it were included in a recent 
paper by Ching [2]. So far as I know, however, its generality and importance 
have not been emphasized before now, certainly not in connection with a 
fully dynamic stability analysis of the kind to be reported next. 

The derivation of (3) requires only simple, well-known techniques in 
the theory of elasticity. A dynamic, linear stability analysis, however, is 
a very much more ambitious project. To make this project feasible, we 
have attempted to compute only the steady-state response of our system 
to a small (i.e. first order) external force that produces a static, spatially 
oscillating shear stress along the z-axis: 

X%xt\x,0)=emeimx, (5) 

where im is the amplitude of the perturbation and m is its wavenumber. The 
goal of the calculation is to compute the perturbed centerline y = Ycen(x) 
of the resulting fracture to first order in im, that is: 

Ycen(x) = Ym eim* = xv(m, v) em eim*. (6) 



INSTABILITIES IN DYNAMIC FRACTURE 195 

Here, XY is a complex steady-state response coefficient that depends on the 
wave number m and the average crack speed v. If XY diverges at some v and 
some real value of m, then we would conclude that the system undergoes a 
change in dynamic stability at that wavenumber and speed. More generally, 
poles of XY in the complex m-plane are stability eigenvalues. We have 
chosen a convention in which the unperturbed crack is moving at speed v 
from right to left, that is, in the negative x direction. Accordingly, poles 
in the lower half m-plane correspond to stable modes. Changes in stability 
occur when poles cross the real m-axis. 

To compute XY, we first have derived and solved a set of Wiener-Hopf 
equations for the stresses and crack-opening displacements on the x axis. To 
first order in im, the relevant one of these equations involves only the mode 
II displacement Us and the corresponding shear stress E,g. The crucial step, 
then, is to note that the condition that Es be nonsingular at the crack tip 
is sufficient to determine Ym and thus XY- This step is directly analogous 
to using the Barenblatt condition [8] that the normal stress be nonsingular 
at the tip to determine the size of the cohesive zone in the zero'th order, 
steady-state problem. 

Our final result has the form: 

Xyl{m,v) = -im [AE^ + KI(-im)1/2V(mt,vj\ . (7) 

Here, AEQQ = Ej/2/(oo) — EXI(oo); Ki (apart from an uninteresting multi- 
plicative constant) is the static, mode I stress-intensity factor, proportional 
to Hyy{oo) VW; and V(m£,v) is a function of v and the product of the 
wavenumber m times £, the length of the cohesive zone. We have defined 
Ki so that P(0,0) = 1. 

As a first step in interpreting (7), note that the limit mi -> 0 must re- 
produce the conventional far-field theory. By definition, the far-field stresses 
are those at distances from the tip much larger than t but still much smaller 
than macroscopic lengths such as W. It is I that sets the scale of the process 
zone and the size of the region in which the stresses are concentrated, thus 
the assumption that ml is negligibly small is equivalent to the assumption 
that we are looking only at stress fields far from the tip. In fact, by setting 
mi = 0 in (7), we obtain precisely the theory of Cotterell and Rice (CR) [3] 
expressed in terms of the response coefficient XY instead of specific crack 
trajectories. Setting mi = 0 is exactly the same as omitting the cohesive 
shear stress (thereby assuming a geometrically sharp crack with no shear 
cohesion in the process zone) and using the far-field condition Kn = 0 
instead of the condition of nonsingular shear stress at the tip to determine 
Im- 

( 
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To emphasize the relationship between (7) and CR, we recast it in the 
form: 

-imxYCR = g. .   .   u/2—-, (8) 
Ki{—im)1-'* — T 

where T = -AEQQ is the CR "T stress". To be consistent with CR, we 
have taken the quasi-static limit, v ->■ 0 and have set V = 1. For positive 
T, XYCR has a pole at m = ms = i(T/Ki)2, which would correspond to an 
unstable trajectory of the form 

Ycen oc eim°x oc exp[-(T/K,)24 (9) 

This is a growing exponential because the crack is moving in the -x direc- 
tion. For negative T, on the other hand, the system appears to be stable; 
the only singularity on the physical sheet of the complex m- plane is the 
branch point at the origin. The associated branch cut should be drawn 
along the negative imaginary m axis. In this situation, CR compute the 
trajectory of a crack tip that initially points away from from the original 
direction of fracture. We obtain their result by computing the response of 
our crack to a localized patch of shear stress. That is, we write the per- 
turbing stress as a linear superposition of our Fourier modes im exp(imx) 
and, for simplicity, let im = e be a constant so that 

dm 
£shear{ • (x) = J^imeimx = eö(x). (10) 

We then find, for x = -\x\ < 0, 

dYcen_       [dm e-H«l _       e     f+°° ^ vß^W 

dx J   2TT \T\ + KI{-imyl2 TTK/i-oo w2 + Ü Kj 

This formula can be rewritten in terms of an error function, but it is easier 
to see what is happening in this integral representation. The perturbation 
is at x = 0. As the crack moves to the left past this point, its initial 
trajectory is Ycen « (2e/Ki)y/\x\/ir. After moving a distance of order W, 
this trajectory is again parallel to the rr-axis but is displaced by an amount 
e/\T\. 

Our earlier discussion implies that this result cannot be entirely correct. 
We have obtained it, in effect, by using a model in which the cohesive shear 
stress is zero, but we have argued that cracks in such a model must be 
manifestly unstable. To see what is happening, we return to (7) and look 
more closely at the behavior of the function V{ml, v) for small but nonzero 
values of mi. As described in Ref. [1], this calculation is quite difficult; it 
requires a careful analysis of how the shear displacement Us is induced self- 
consistently by the cohesive shear stress in the elastic field of the moving 
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crack. The result, however, is simple and very interesting. To leading order 
for small values of both mi and v, we find: 

3imt 
V(mt>,v)Kl+ a      , (12) 

I1 ~ K)T ~ %mlL 

The first term on the right-hand side — unity — is just what we had 
before; but the new term — the contribution of the cohesive shear stress 
— is singular at ml — v = 0. 

For the moment, let us drop the quantity ASQO in (7) on grounds that 
it ordinarily is small of order W-1/2 in comparison to Kj. Then, a zero of 
V in the complex m- plane is a pole of Xr(m, v) and, from (12), we see that 
V vanishes atm = ms = i(l-i)j. For any nonzero v, ms is in the upper 
half plane and therefore indicates instability. Unlike the weakly unstable 
CR trajectory in (9), however, this instability is very strong: 

Ycen oc etmsX oc exp -HMS). (13) 

Thus, the very small length I sets the scale for unstable motion away from 
a straight trajectory. This analysis also tells us what happened when, in 
the far-field theory, we let l become small at fixed v; the pole at ms moved 
indefinitely far up the positive imaginary m-axis, where it became mathe- 
matically invisible but nevertheless implied strong physical instability. We 
conclude that the cohesive-zone model is marginally stable at the zero- 
velocity threshold but becomes unstable at any nonzero velocity. This con- 
clusion is consistent with the tip-stress analysis in Eq. (3). 

An obvious question is whether there is any modification of this model 
that can produce stability in isotropic materials, at least at small speeds. 
That question is large and complicated, far too large to be addressed here 
in any generality. But there is one simple modification that is suggested by 
physical considerations and which, when implemented, helps us to under- 
stand the significance of our results. Once one accepts the implications of 
the tip-stress analysis, it seems clear that any degree of stability against 
deflection must require a large enough cohesive shear stress at the crack 
tip to suppress the growth of mode-II components of fracture. Our natural 
choice of Ecs in (2), based on our picture of central forces acting between 
the newly opened fracture surfaces, puts us exactly at the marginal point 
where the fracture energy is the same in mode-II as it is in mode-I. 

It is easy to see what happens if we move just slightly away from this 
point. We can change the central- force assumption by multiplying the 
right-hand side of the equation for Scs in (2) by a factor, say, 1 + p. Let 
us also say that p is a small quantity. (If the difference between fracture 
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energies in modes I and II is caused by dissipative effects, as in principle it 
must, then p must depend on v. But that is a level of detail that is beyond 
the scope of the present discussion.) The introduction of p changes (12) by 
shifting the singularity in the cohesive shear term away from v = mi. = 0: 

3im£ 

p<"^)gl + (i-i)f-,^-/ <14) 

The pole in xY(m,v) is now at ms = -2tf + i(l - £)*£. If p is negative, 
that is, if the mode II cohesive stress is less than the mode I stress, then 
the only change is that ms remains in the upper half plane at v = 0. As 
expected, the crack with less than marginal resistance against bending into 
mode II is unstable even in the quasi-static limit. 

When p is positive, on the other hand, the pole is at ms = -2ip/£ for 
v = 0, and it moves into the unstable upper half plane at a nonzero critical 
velocity vc = y/2p/{l - 1/K). For v < vc, we can compute the response 
to perturbations that are slowly varying on the scale of t by taking the 
limit mt ->■ 0. In this way, we recover the CR theory in all respects. In 
particular, (8) is correct. But such a calculation is entirely incapable of 
telling us whether or not the crack is stable and, thus, whether or not a 
CR calculation of this kind is physically sensible. To determine stability, 
we must look in detail at the cohesive forces acting at the crack tip and 
try to understand the physical mechanisms that might cause the cohesive 
shear stress to be larger than its central force value. 

In conclusion, we can indeed construct an isotropic model in which there 
is a transition from stability to instability at a nonzero crack speed, but so 
far only by using a large cohesive shear stress. The search for an explanation 
of why the cohesive shear stress might be larger than its central-force value, 
and more generally the search for other possible stabilizing mechanisms, 
are important projects for further research. These projects inevitably must 
involve more realistic pictures of what is happening at crack tips. 
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Abstract. An infinite elastic-brittle plate subjected to a transverse impact 
is considered. Many cracks, each of which extends through the full thickness 
of the plate, are assumed to grow radially from the impact point. Due to 
circumferential bending, the faces of these radial cracks tend to close over 
a portion of the plate thickness. In this paper, the dynamics of the radial 
crack system within the influence of a tangential unilateral constraint which 
prevents crack face interpenetration is examined. The analysis is simplified 
by assuming that the faces interact only over the lines where these faces 
meet a surface of the plate, rather than over some unknown area of the 
fracture surfaces. In other words, the local contact strain is neglected. The 
radial cracks are assumed to be large in number and evenly distributed so 
that the deformation retains axial symmetry. The governing equations are 
derived, and a transient, self-similar solution of these equations is construct- 
ed, relating the plate response to the impact force. The extension of the 
radial cracks according to the principles of fracture mechanics is explored. 

1.   Introduction 

The rapid formation of a system of radial cracks typically accompanies 
the dynamic concentrated impact of a brittle plate. In all likelihood, the 
quasi-continuum approach adopted in this paper is more suitable for dy- 
namic radial cracking than for the elastostatic studies published to date 
(Hellan, 1984; Dempsey et al, 1995b). The first quasi-continuum 'multi- 
ple crack' analytical solution was derived by Hellan (1984) for an elastic 
Kirchhoff-Poisson plate with line contact of the crack faces. The last restric- 
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tion was removed by Dempsey et al. (1995a&b), and an analytical solution 
was obtained for a nonzero closure contact width, based on both the cor- 
responding 'inner' plane contact problem of elasticity as well as the 'outer' 
coupled plane-bending problem of thin plate theory. The local and global 
expressions for the energy release rate, and the bearing capacity of such 
a cracked plate were also determined. Further, an accurate evaluation and 
approximate expression for the asymptotic closure contact strip width and 
stress distribution were obtained. The contact strip width was found to 
depend on the ratio of the contact bending moment to the in-plane force. 

In the paper by Dempsey et al. (1995b) as well as in the paper by 
Slepyan et al. (1995), it was shown that the contact strip is accurately 
modeled as line contact once the crack length has increased sufficiently, 
relative to the plate thickness. The initial formulation by Hellan (1984) is 
therefore adequate for relatively long cracks. In the present paper, a similar 
simplified formulation is used. In addition, the contact closure width and 
stress distributions are assumed to be quasi-static but to be expressed in 
terms of the contact force and moment distributions that are determined 
from the dynamic problem under consideration. Such a decomposition of 
the problem into dynamic and quasi-static (in-plane) deformation fields 
concerns both the global and local actions: only the out-of-plane inertia 
forces are taken into account. In other words, the relatively small in-plane 
motion is assumed to be quasi-static. Under these conditions, as is shown 
below, a self-similar solution in the form tkf((), ( = r/y/2hct, exists not 
only for an intact plate but also for the extensively radially cracked plate 
in spite of the coupled bending-stretching deformation that occurs in the 
crack closure area (CCA) . In the above representation, 2h,c,t,r,k and / 
are the plate thickness, the plane wave velocity, time, the radial coordinate, 
a number (it may not be integer), and an unspecified function, respectively; 
c = %/E/p, while E, v and p are the Young's modulus, Poisson's ratio and 
density of the plate material, respectively. Note that the functions of £ 
depend on k as well. 

The plate is assumed to be loaded by a concentrated force or impulse 
at the central point, r = 0, only. Thus, an axisymmetric homogeneous 
problem is considered for r > 0. Note that a number of circumferential 
cracks usually appear in addition to the radial cracks. While the governing 
equations derived below are valid for the case of circumferential cracking, 
the self-similar solution developed in the paper is valid solely for radial 
cracking. 

The problem under consideration displays one important feature which 
cannot be obtained via conventional fracture mechanics, viz., the determi- 
nation of the number of cracks. In addition, the total energy release by the 
axisymmetric quasi-continuum crack array (by the moving interface) may 
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differ from that in a system comprised of a finite number of cracks. This 
difference, the magnitude of which is an unknown function of the speed 
of the crack zone boundary, may be produced by additional elastic waves 
generated by such a star crack system, these waves carrying energy away. 
One can avoid these difficulties using the principle of maximum energy 
dissipation rate directly in the axisymmetric formulation of the problem. 

2.   Formulation 

The key to the formulation is an adequate description of the coupling be- 
tween the in-plane (u,Sr,Sg) and out-of-plane (w,Mr,Mo,Qr) quantities. 
The quantities w(r,t) and u(r,t) denote the vertical and radial displace- 
ments of the plate in the central plane (z — 0), respectively (w' = dw/dr); 
Sr and Se denote the in-plane radial and tangential forces, respectively, 
per unit length and MT and Me denote the radial and tangential bending 
moments. In addition, let Qr denote the radial shear force per unit length. 

Figure 1. The crack system. Figure 2. The forces and moments. 

The radially cracked plate configuration (Fig. 1) is assumed to be sepa- 
rated into the following two regimes: the radial crack closure area (the 
inner region 0 < r < R, R = R(t)) which is hereafter called the CCA, 
and the unbroken or intact plate area (the outer region, r > R), which is 
hereafter called the IPA. The in-plane interaction force Se is compressive in 
the CCA (Se < 0). The formulation here prescribes that Se acts at z = 0. 
In addition to this in-plane force, a moment Me acts at the same radial 
location on 6 = const. This force and moment are statically equivalent to 
the force Se acting at z = —h (Fig. 2). 

The occurrence of this in-plane force Sg thus couples the planar and 
bending deformations. Note that the plate becomes wavy under the con- 
sidered dynamic action, and if the intensity of the action is large enough 
the CCA can include alternate sub-areas with the crack surfaces contact- 
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ing at z = ±h. In all cases with crack closure, the solution must satisfy 
the inequality Sg < 0, and this condition serves to determine the extent of 
the sub-areas. In the case when the inequality cannot be satisfied at both 
z = h and z = —h, an open crack area (OCA) arises with Sg = 0. In the 
general case, sub-areas with the contact at z = ±h and Sg = 0 may exist. 
However to be brief, only the case z = — h is considered here. The general 
solution may be derived in the same way. 

The governing equations for dynamic out-of-plane deformations but 
quasi-static in-plane deformations are given by (I = 2/i3/3): 

EIw" = Mr- vMg,   MB = (rMr)' + rQri   (rQr)' = 2phrib.       (1) 

2Ehu=Sr-vSo,   Se = (rSry. (2) 

Crack closure in the CCA with line contact at z = —h gives 

Me = Seh. (3) 

The coupling between the in-plane and out-of-plane quantities occurs solely 
through the expressions for the strain, e$, in the continuous circular material 
line z = — h in the CCA: 

eg = (u + hw')/r = (Sg - vSr)l2Eh + h(Me - vMr)IEI. (4) 

The following definitions for the moments, shear force and tangential strain 
are applicable in the IPA only [D = El/{I - v2)}: 

Mr = D(w" + uw'/r),   Me = D(w'/r + vw"), 

Qr = -D{w" + w'/r)',   2Eh u/r = Sg - vSr. (5) 

In the OCA, the relations for the CCA are valid with (4) replaced by the 
equality Sg = 0. 

Under the condition of a central impact transverse force, 

lim 2-KvQr = -Pit),   lim rMr = 0,   lim rSr = 0. (6) 
r—tO r—*0 r—yQ 

while at infinity: 
w = u = 0. (7) 

Continuity conditions at the moving interface, r = R(t) require that 

[Sr] = [Mr] = [Qr] = [u] = [w] = [w'] = 0. (8) 

The general expression for the energy release per crack in the quasi- 
continuum axisymmetric problem is derived in Dempsey et al. (1995b). In 



RADIAL CRACK DYNAMICS WITH CLOSURE 205 

the present simplified case of line contact, in which the contact force Se is 
assumed to be applied at z = -h, this expression coincides with that used 
by Hellan (1984), and is given by 

G=MW      [M9] = M9{&)-Mt(Br). (9) 
nh    LI 

3.   Governing Equations 

In the IPA, the deflection of the plate must satisfy 

DA2w + 2phw = 0,   r(ru')' - u = 0,    A = ~ [r—j (10) 

In the OCA, where Sg = 0, 

EI(rw")" + 2phrw = 0,   {ru')' = 0. (11) 

In the CCA, the system of equations (l)-(4) may be reduced to two coupled 
equations in terms of w(r,t) and Sr(r,t): 

2 
3 

2Eh2[w" + v{rw")'\ + Sr - (4 - Zv2)[r(rSr)']' = 0. (12) 

\Eh\rw")" + 2prw - (rSr)" + v(r{rSr)')" = 0, 

4.   Self-Similar Solution 

In the CCA the self-similar solution is posed as 

w{r,t) = (j)   hW(Q,   u(r,t) = (j) W/(C), 

5,(r,t)=g)WüM0.   Sr(r,t)= (fj^EhSiO, 

Me(r,t) = (I)"'1 Eh2me(0,   Mr(r,t) = (|)      Eh2mr{Q, 

Qr(r,t)=^)k~3/2Ehqri0,    C = ^,      (13) 

where the functions of C axe different for different k, and this is noted below 
by the corresponding subscript: w(r,t) = wl:(r,t), W(() = Wk((). 

In the IPA, the plane and bending problems are not coupled by the 
equations but they are coupled by the CCA - IPA interface conditions (8). 
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For the self-similar representation to be valid here, in both the CCA and 
the IPA, one has to assume that the interface (the phase transition front) 
corresponds to a constant £, defined here as Z. In other words, the radius 
R(t) must be proportional to y/i. In turn, the corresponding functions in 
the CCA have to have the same time-multipliers (the same k) as in the 
IPA. In the terms of (13), 

™ = ^ß (£) * iK[kwk(0 - (CWk(0)'} + j(C3Wk(0)'h    (14) 

where now primes denote differentiation with respect to £, and from (12) 
one has 

f ccw* r+{ewky+4*ciw - (w] - (csky+wccc w=o, 
W'k' + v(CW'ky + Sk-(4- 3v2)[aCSk)'}' = 0. (15) 

For the case k = 0, which corresponds to an impulse, p, one has P = 0 for 
t > 0 (P = pS(t),p — const). With this in mind, based on the conditions in 
(6), one can see that these equations reduce to 

|(co'+c3^o - (w+uiacso)']' = o, 
WS + u((Wgy + So - (4 - 3i/2)[C(CSb)T = 0. (16) 

For k = 0, the central point is regular (t > 0), and one can find 

<(0) = 3(l-*/)S0(0)    (C = 0). (17) 

The solution to (16) can be expressed in series-form as 
00 oo 

w. - ft + c,c+S(„+1)(„+2)c". * = 5><". 
1 1       °°    /      1 \ 

<7„ = --^(0) + ^ £ (— - ,) «»+>, (18) 

with the coefficients being represented by the following recurrence relations: 

3   1 - (4 - 3u2)(n + l)2 

4 n(n + l)(n + 2)(n - 3) Qn—4? 

, 3 l + u(n+l) 
K = -4n(n+l)(n + 2)(n-S)an-4>   n = 4 + m>   «» = 0,1,2,...; 

a0 = 3(1 - J/)&0,   b0 = 5o(0),   ßi = a2 = &i = &2 = 0, 

1 - 16(4 - 3z/2) „      t 1 + 4i/ „     ,    N 
«3 = ^ ^C2,   b3 = -_ C2. (19) 



RADIAL CRACK DYNAMICS WITH CLOSURE 207 

The equality  Uo(0) = W£(0)/>/5 follows from (4), (6) and (13). 
The dynamic bending problem for the IPA was originally considered by 

Sneddon (1945). For k = 0, the general solutions can be represented as 

V3 
Wo(C) = h si(*e) + h ci(/c),    K = IL-y/i-j,*?, 

where I\   and I2  are arbitrary constants, and 

cos£ 
d(x) = - / 

Jx 
'-d£,    si(x) 

Jx C 

(20) 

(21) 

For the OCA with no crack surface interaction (if this region exists 
or with crack face interpenetration being ignored), Sß = 0, and the first 
equation in (16) reduces to 

(CO' + 3CWo = 0 (22) 

a) 

A 
0 12 3 4 5 

K 

4.5 ^ ^ 

4 

S 
> 3.5 

3 

b) 

0       0.5       1        1.5       2        2.5 
Z 

Figure 3. The plate under a concentrated impulse: a) The lateral displacement of 
the intact plate, Z = 0 (dashed curve), and in the CCA - IPA problem, Z = 1 . 
b) The dependence of the central displacement on the interface motion. 

The solution to this equation that is regular at C, = 0 looks as 

^o(C) = CoMß),  ß = ^2 = ^==j»   Co = const.        (23) 
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The other Bessel functions of the same index and argument satisfy this 
equation as well. 

In the CCA - IPA problem under consideration, there are six arbitrary 
constants in the solution, three in the CCA: C\,C2 and 5o(0), and three 
in the IPA: I\,h and U(Z). These constants are defined by the interface 
conditions in (8). Note, however, that in the considered case, k = 0, the 
continuity conditions in (8) [Qr] = 0 and [w'] = 0 are equivalent to each 
other, and the relation for the total momentum, p, has to be used as an 
additional equality required for the determination of these constants. The 
total momentum can be expressed as follows 

p = 4wh2p^- /    wrdr = p°        W0(C)C <%,   p° = *{2hfpc.       (24) 
at Jo Jo 

Now based on (18) and (20) one can find (K* = K(Z)) 

11 oo yn+4 

^"2ZCl + r C2 + ^0(n + l)(n + 2)(n + 4) 

  [(cos K* + K*si(K*))/i - (sinK* - K*ci(K*)/2] (25) 
\/3(l - z'2) 

Some results of calculations are shown in Figure 3 where the normalized 
displacement V(() = p°W0(()/p is used, and v - 0.3. 

The self-similar solution for any k can be found by the superposition 

w 
rct/h       f    r     \ (Ci     CTY'

1
   JCT\ 

5.   Energy Criterion And Crack Number 

To determine the specific form of the interface motion one can appeal to 
the energy criterion (9). In terms of the notations in (13), with k = 0, 

c_3irEh2Z[sef   /2I 
ctn        V ct' 

Assuming G — Gc and Z to be constant during crack growth one has no 
choice but to consider the number of cracks as a function of r. In fact, to 
satisfy the latter condition it is necessary that n be proportional 1/r3. In 
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this case, and only in this case, G is constant, and the relation (27) is given 
by 

_    n      3wEh2Z4[se]2 (2h\3 

The above criterion has made it possible to determine the dependence n(r) 
but not the arbitrary constant n*. The number of cracks, under the cho- 
sen quasi-continuum formulation, remains indeterminate within the con- 
ventional fracture mechanics framework. 

An alternative approach, one which does not require that the number 
of cracks be accentuated, is to assume that the interface motion obeys the 
principle of maximum energy dissipation rate (Slepyan, 1992&1993). This 
criterion requires that the total energy flux into the propagating interface 
be maximal: 

N = (2hnG - G%n)R = 6*Eh2c (^ [se]2Z2 - G%nZ^±       (29) 

where G*^in be the minimal energy release rate required for the crack sys- 
tem motion. The system of cracks can be assumed to arrest, however, when 
the total energy release rate falls below this minimum which, in turn, cor- 
responds to the final number of radial macro-cracks. 

6.   Concluding Remarks 

The above self-similar solution corresponds to an impulsive force. An arbi- 
trary solution for k > 0 , and a superposition of a set of fc-modes can be 
used. However, for the latter case, the interface motion must be the same for 
each fc-term. The question arises about when such a set of the self-similar 
solutions is meaningful. The answer is as follows: the self-similar solutions 
are valid as long as the crack zone frontal velocity is proportional to \/i. 
In a more general case, the quasi-continuum approach for the crack area 
description and the equations (10)-(12) can be used. 

The solution presented in this paper is related to the problem of high- 
speed impact or perforation of a brittle plate. In this sense, it is only a 
part of the general problem. The associated reactive deformations of the 
impactor are not considered here. In the case of a high-speed-impact, the 
problem can be separated, to first order, into two problems. The first con- 
cerns the force-central displacement relation, which can be considered as- 
suming that R = oo. In this case, the superposition is valid, and one has: 

w(0,t) = hWo(0)P(t),   Wo(0)«4.5p°. (30) 
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The second problem concerns the final radius of the cracked zone. This final 
radius can be deduced via the above self-similar problem (k — 0) with the 
impulse, p, derived from the first problem. 

Finally note that the quasi-continuum approach adopted here is suitable 
for determination of the radial crack zone propagation and arrest. In fact, 
circumferential cracking, which usually arises in such a process, can be 
taken into consideration based on the above formulation as well as that in 
the solution derived by Dempsey et al. (1995b). 

7.   Acknowledgement 

This study was supported by the U.S Office of Naval Research through its 
Sea Ice Mechanics Accelerated Research Initiative [Grant No. N00014-90- 
J-1360]. 

References 

Dempsey, J.P., Adamson, R.M. and DeFranco, S.J. (1995a) Fracture analysis of base- 
edge-cracked reverse-tapered plates, Int. J. Fract. 69, 281-294. 

Dempsey, J. P., Slepyan, L. I. and Shekhtman, I. I. (1995b) Radial cracking with closure, 
Int. J. Fract. 73, 233-261. 

Hellan, K. (1984) An asymptotic study of slow radial cracking, Int. J. Fract. 26, 17-30. 
Slepyan, L. I. (1992) The criterion of maximum dissipation rate in crack dynamics, Sov. 

Phys. Dokl. 37, 259-261. 
Slepyan, L. I. (1993) Principle of maximum energy dissipation rate in crack dynamics, /. 

Mech. Phys. Solids 41, 1019-1034. 
Slepyan, L. I, Dempsey, J. P. and Shekhtman, I. I. (1995) Asymptotic solutions for crack 

closure in an elastic plate under combined extension and bending, J. Mech. Phys. 
Solids 43, 1727-1749. 

Sneddon, I. N. (1945) The symmetrical vibrations of a thin elastic plate, Proc. Camb. 
Phil. Soc. 41, 27-43. 

Zener, C. (1941) The intrinsic inelasticity of large plates, Physical Review 59, 669-673. 



NUMERICAL STUDIES OF FAST CRACK GROWTH IN 

ELASTIC-PLASTIC SOLIDS 

T. SIEGMUND AND A. NEEDLEMAN 
Division of Engineering 
Brown University, Providence, RI, 02912 USA 

Abstract. Dynamic crack growth is analyzed numerically for a plane strain 
block with an initial central crack. The material on each side of the bond 
line is characterized as an isotropically hardening elastic-viscoplastic solid. 
A cohesive surface constitutive relation is also specified that relates the 
tractions and displacement jumps across the crack plane. Crack initiation, 
crack growth and crack arrest emerge naturally as outcomes of the imposed 
loading, without any ad hoc assumptions concerning crack growth criteria. 

1.   Introduction 

Analyses of fast crack growth in structural metals have generally been based 
on an approach where a material and crack speed dependent value of a 
characterizing parameter, such as the energy release rate or the stress in- 
tensity factor, is used in conjunction with a crack tip equation of motion, 
Freund (1990). Another approach, where physically based models of the 
micromechanisms of failure are incorporated in the material's constitutive 
relation, is described in Needleman and Tvergaard (1991) and Tvergaard 
and Needleman (1993). 

The basis for our analyses of dynamic crack growth in elastic-viscoplastic 
solids is the cohesive surface formulation in Needleman (1987). This co- 
hesive surface framework has been used previously to model quasi-static 
crack growth in plastically deforming solids, e.g., Needleman (1990a,b), 
Tvergaard and Hutchinson (1992), and dynamic crack growth in elastic 
solids, e.g., Xu and Needleman (1994). In this study, material and cohesive 
parameters are chosen to give deformation behavior and toughness values 
representative of a structural steel. The focus here is on the evolution of 
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the crack speed for straight ahead crack growth; more detailed results are 
presented in Siegmund and Needleman (1996). 

Pull finite strain transient analyses are carried out for a plane strain 
block with an initial central crack and subject to tensile impact loading. 
Attention is restricted to a single cohesive surface, which restricts the crack 
to grow along the initial crack line. For the given loading, crack initia- 
tion, crack growth and crack arrest are determined directly in terms of the 
material properties and of the parameters characterizing the cohesive sur- 
face separation law. The cohesive parameters include a strength and the 
work of separation per unit area so that, from dimensional considerations, 
a characteristic length enters the formulation. 

2.   Formulation 

The cohesive surface formulation and numerical method follow that in Xu 
and Needleman (1994). The difference here is that the material is taken to 
be elastic-viscoplastic and attention is confined to a single cohesive surface. 
A finite strain Lagrangian formulation is used, with the principle of virtual 
work written as 

/ s : SFdV - [    T • SAdS = [    T • SudS - / p-^ • 6udV       (1) 
Jv Jsint Jsext Jv   otl 

where s is the nonsymmetric nominal stress tensor, u is the displacement 
vector, F is the deformation gradient, A is the displacement jump across 
the cohesive surface, A : B denotes AijBji, V, Sext and Sint are the volume, 
external surface area and internal cohesive surface area, respectively, of the 
body in the reference configuration. The density of the material in the 
reference configuration is p and the traction vector T and the reference 
configuration normal n are related by T = n • s. Also, s = F_1 • r, where 
r= det(F)er, with a being the Cauchy stress. 

Plane strain conditions are assumed and a Cartesian coordinate system 
is used as reference, with the x\ - x2 plane being the plane of deformation. 
Computations are carried out for center cracked rectangular specimens of 
dimension 2w x 2L with an initial crack of length 2a* along x<i = 0. At t = 0, 
the body is stress free and at rest. Equal and opposite normal velocities are 
prescribed on the edges at x2 = ±L, with the shear traction required to 
vanish. The edges at Xi = ±w are traction free. Symmetry conditions are 
presumed so that only one quarter of the specimen is analyzed numerically. 

The volumetric constitutive law is that of an elastic-viscoplastic isotrop- 
ically hardening solid. The total rate of deformation, D =sym(F • F_1), is 
written as the sum of an elastic part, De, and a plastic part Dp. Small 
elastic strains and elastic isotropy are presumed. The viscoplastic flow law 
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is 

D> = |r< (2) 

where e is the effective plastic strain rate and 

y = r-i(r:I)I,ä2 = ^r':r' (3) 

i = e0[*/g(e)fm , g(e) = a0(e/e0 + if , e0 = a0/E (4) 

Here, a superposed dot denotes differentiation with respect to time, e = 
Jedt, (To is a reference strength, and N and m are the strain hardening 
exponent and strain rate hardening exponent, respectively. Neither ther- 
mal softening nor a variation in strain rate sensitivity with strain rate are 
accounted for in (4). 

The material properties are taken to be representative of a high strength 
steel with E = 211 GPa, v = 0.3, a0 = 1000 MPa, N = 0.1, m = 0.01, 
e0 = 1/s and p = 7800 kg/m3 = 7.8 x 10-3MPa/(m/s)2. The dilational, 
shear and Rayleigh wave speeds are 6034 m/s, 3226 m/s and 2987 m/s, 
respectively. 

The constitutive law for the cohesive surface is taken to be elastic so 
that any dissipation associated with separation is neglected. The traction 
across the cohesive surface, which lies on x? = 0 and |xi| > Oj, is given by 

Because the crack is constrained to grow along the initial crack line and 
symmetry conditions prevail about that line, only normal separation occurs. 
The specific form used for the potential is, Rose et al. (1981), 

4> = (j)n - <j>n (1 + -^ J exp (-yH (6) 

where cf>n is the work of normal separation, An = 2ii2(zi>0) is the normal 
displacement along the cohesive surface and 8n is the cohesive characteris- 
tic length. At An = <5n, the magnitude of the traction across the cohesive 
surface attains a maximum, amax. The work of separation, the cohesive 
surface strength and the cohesive surface characteristic length are related 
by (j)n = exp(l)amax8n. When 6n is substantially smaller than all geomet- 
ric lengths, crack growth predictions are not sensitive to the shape of the 
potential. 

Under dynamic loading conditions the J—integral, Rice (1968), involves 
an area integral as well as a line integral (Nakamura et al, 1985), 

f r/Trr     r, m    du]  ,       f [ dv    du dv 
dA    (7) 
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where v = du/dt, W = / r: Bdt, L = pv • v/2, T is a path surrounding the 
crack tip and n\ is the component of the normal to T in the xi -direction. 

The finite element discretization is based on linear displacement triangu- 
lar elements that are arranged in a 'crossed-triangle' quadrilateral pattern. 
An explicit time integration scheme based on the Newmark /?-method, 
with ß = 0, is used together with a lumped mass matrix. The constitutive 
relation is integrated using the rate tangent method of Peirce et al. (1984). 

3.   Results 

We confine attention to specimens having L — 30 mm, w = 30 mm and 
an initial crack length of Oj = 10 mm. A finite element mesh of 225 x 60 
quadrilaterals is used, with a uniform 200 x 10 mesh in a 4 mm x 0.2 mm 
region in front of the initial crack tip. The square elements in the uniform 
mesh region have side lengths of 0.02 mm. 

The cohesive surface characteristic length is fixed at 6n = 2 /xm and, 
unless stated otherwise, amax = 3cr0 = 3000 MPa so that <f>n = 16.2 KJ/m2. 

The first loading wave arrives at the crack tip at 4.98 fjs after impact 
and the next loading wave at 14.94 ßs. Assuming the impact itself does 
not cause plastic deformation, the stress carried by the loading wave is the 
density times the dilational wave speed times the impact velocity. Impact 
velocities of 5 m/s, 10 m/s 15 m/s, 20 m/s and 30 m/s then correspond 
to stress levels of 235 MPa, 470 MPa, 705 MPa, 940 MPa and 1410 MPa, 
respectively. Because there is impact at both ends, the stress level on the 
crack plane at 4.98 /zs is twice that carried by each of the two loading waves. 

In the following, to facilitate comparison with the quasi-static results of 
Tvergaard and Hutchinson (1992), the reference quantities 

WÄ    *" = (£) (8> 
are used for normalization. The quantity K0 defines a reference stress in- 
tensity factor and Ro is a reference plastic zone size. With amax = 3000 
MPa, K0 = 61 MPaVm and R0 = 0.4 mm. 

Although the small scale yielding normalization, (8), is used, this is only 
to make contact with previous results; small scale yielding conditions do 
not prevail in all cases. For impact velocities of 5 m/s and 10 m/s, plastic 
deformation is pretty much confined to the vicinity of the crack tip region. 
On the other hand, for impact velocities of 20 m/s and 30 m/s, plastic 
deformation extends from the crack tip to the block boundary well before 
the crack has reached the end of the uniform mesh region. The case with an 
impact velocity of 15 m/s is an intermediate one, where plastic deformation 
is confined to the crack tip in the earlier stages of crack growth, but some 
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Figure 1.    Crack speed versus time for cr„ 
impact velocity. 

= 3000 MPa and for various values of the 

plastic deformation is present over much of the ligament region toward the 
end of the calculation. 

Curves of crack speed, a, versus time for various values of impact ve- 
locity are shown in Fig. 1. The crack location is identified with An > 5<5„ 
and the curve of crack location versus time is differentiated as described in 
Xu and Needleman (1994) to obtain the crack speed. For impact velocities 
of 10 m/s and greater, crack growth begins shortly after arrival of the first 
loading wave. However, crack growth does not begin until after the second 
loading wave arrival for an impact velocity of 5 m/s. The calculations are 
terminated when the crack approaches the end of the uniform mesh region. 
For comparison purposes, the results of a calculation with amax = 3000 
MPa, an impact velocity of 10 m/s and with elastic material response are 
also shown. Comparing the two calculations with an impact velocity of 10 
m/s shows that plastic deformation prior to the onset of crack growth gives 
rise to a delay in crack initiation. 

The variation of crack speed with normalized crack extension, Aa/Ro, 
is shown in Fig. 2. For the viscoplastic solids in Figs. 1 and 2 the crack 
speed exhibits a local maximum, except for the case with the lowest impact 
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Figure 2.     Crack speed versus crack extension for amax = 3000 MPa and for various 
values of the impact velocity. 

velocity, 5 m/s. The time at which the maximum crack speed is attained 
depends on impact velocity, indicating that the crack speed maximum is 
not a consequence of wave effects, For the elastic solid, the crack speed 
increases over the entire range of crack growth calculated. 

Figure 3 shows curves of the normalized stress intensity factor, K/Ko, 
versus the normalized crack extension, Aa/R0, where K is defined in terms 
of the J—integral in (7) by 

K = 
EJ 

(1 - i/») 
(9) 

The relation (9) is used here to define K, which is the stress intensity 
factor in small scale yielding, even when small scale yielding conditions do 
not prevail. 

In our calculations, the value of the work of separation, <j>n, is fixed 
and the elevation of K above K0 in Fig. 3 is a consequence of material 
dissipation. Crack growth appears to begin when K is somewhat larger than 
K0, but the initiation value of K is sensitive to the value of An used to define 
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Figure 3.       Normalized stress intensity factor versus normalized crack growth for 
crmax = 3000 MPa and for various values of the impact velocity. 

the crack location. Once significant crack growth takes place this sensitivity 
disappears. The general trend is for the value of K to increase rapidly in the 
early stages of crack growth, reach a plateau and then increase again. The 
K/KQ level for the case in Fig. 3 with an impact velocity of 10 m/s, in the 
range Aa/Ro < 2, is in good agreement with the corresponding quasi-static 
result in Tvergaard and Hutchinson (1992). Because plastic deformation 
precedes crack growth with an impact velocity of 5 m/s, this case has a 
larger plastic zone around the crack tip and a higher apparent toughness 
than does the case with an impact velocity of 10 m/s. The increase in 
K occurs in the very early stages of crack growth so that, effectively, the 
apparent initiation toughness is raised. 

The data from Figs. 1 and 3 is used to plot curves of K/KQ versus crack 
speed in Fig. 4. These curves show a strong upturn in the stress intensity 
factor as the crack speed increases. In Xu and Needleman (1994), for an 
elastic solid, crack branching limits the crack speed. Here, for a viscoplastic 
solid, the combination of material inertia and dissipation act to limit the 
attainable crack speed even when the crack is constrained to grow along 
the initial crack line. 



218 T. SIEGMUND AND A. NEEDLEMAN 

K/K„ 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

-r-r 

Ms--" 

500 1000 

'"      5.0 (m/s) 

 10 (m/s) 

  15 (m/s) 

 20 (m/s) 

 30 (m/s) 

1     '     ■     ■     ■     '     '     ■     ■     ■     '     '     ■—1 

1500 2000 2500 
ä (m/s) 

3000 

Figure 4-    Normalized stress intensity factor versus crack speed for amax = 3000 MPa 
and for various values of the impact velocity. 

The dependence of stress intensity factor on crack speed in Fig. 4 is 
consistent with experimental observations, see e.g. Rosakis and Zehnder 
(1985) and Zehnder and Rosakis (1990). While there clearly is not a one- 
to-one correspondence between the value of K and the crack speed, three 
cases, those with impact velocities of 10 m/s, 15 m/s and 20 m/s, fall 
within a fairly narrow band. For these cases, the crack speed at which 
the sharp increase in K takes place, fa 1200 m/s, is in good agreement 
with the experimental values in Rosakis and Zehnder (1985) and Zehnder 
and Rosakis (1990). Lam and Freund (1985) and Freund (1990) found the 
stress intensity factor to be a strongly increasing function of crack speed in 
computations where dynamic crack growth in a plastic solid was assumed to 
occur at a constant speed. In the formulation here, the crack speed history, 
as well as the history of K, are outcomes of the analysis. 

The effect of varying amax is shown in Fig. 5 where the impact velocity is 
fixed at 10 m/s, cr0 = 1000 MPa and the value of the cohesive strength, amax 

is varied. With amax = 2000 MPa, the crack speed increases from about 
1200 m/s to about 2100 m/s and the decrease in crack speed following the 
peak is smaller. Thus, the crack speed at which the sharp upturn occurs in 
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Figure 5,    Crack speed versus time for an impact velocity of 10 m/s and various values 
of the ratio of cohesive surface strength to reference flow strength. 

Fig. 4 is dependent on the value assumed for amax as well as on the impact 
velocity. 

In Siegmund and Needleman (1996) a calculation is carried out for 
Vmax/vo = 2.0, but with amax = 3000 MPa and a0 = 1500 MPa. In that 
case, the crack speed increases monotonically to a steady state value. Thus, 
the occurrence of the crack speed peak is not a generic feature of the model, 
but depends on parameter values. In this regard, it is interesting to com- 
pare with the results in Needleman and Tvergaard (1991), which were based 
on a physical model of a fracture mechanism involving two size scales of 
void nucleating particles, larger particles that nucleate voids at a rather 
early stage in the deformation history and smaller particles that nucleate 
voids much later. In that study, the crack speed was found to increase to 
a constant value once the crack had grown through several of the large 
particles. 

Figure 5 shows that the delay between the arrival of the first loading 
wave and the onset of crack growth increases with increasing values of the 
cohesive strength, amax. For the case in Fig. 5 with the cohesive strength 
equal to 3500 MPa, crack growth begins after the arrival of the first loading 
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wave, but crack arrest occurs and the crack remains essentially stationary 
until after the arrival of the second loading wave. There is a significant 
delay between the arrival of the second loading wave (at 14.94 /xs) and the 
reinitiation of crack growth. It is worth emphasizing that the crack speed 
histories in Fig. 5 are obtained as outcomes of the initial/boundary value 
problem formulation. 
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DYNAMIC CRACK GROWTH IN VISCOPLASTIC 

MATERIALS 

D. GROSS, ST. HEIMER AND J. HOHE 
Institute of Mechanics, TH Darmstadt 
Hochschulstr. 1, D-64289 Darmstadt, Germany 

Abstract. Fast propagation of a semi-infinite crack in a Perzyna-type ma- 
terial is investigated by two different approaches. First, the asymptotic 
crack tip field is considered. The field quantities are determined and the 
dependence on material parameters and crack speed is discussed. Apply- 
ing a strain criterion a K(v) curve is derived for small scale yielding. In 
the second part, a damage yield strip model for stationary crack growth 
is described. Numerical results are presented including the dependence of 
the stresses, the crack driving force and the temperature distribution as a 
function of crack velocity. 

1.   Introduction 

The behavior of fast running cracks under small scale or large scale yielding 
conditions is far from being fully understood. For example, the predeter- 
mination of the crack speed for a given material, geometry and loading in 
general is not possible. A theory based explanation of the observed crack 
speed dependence on the driving force is still an open question of basic 
interest. An overview about different approaches to fast crack growth can 
be found in Freund [3]. 

Inelastic material behavior usually is rate dependent especially at high 
strain rates as appear near running crack tips. Therefore, application of 
viscoplastic material models might be sensible in the description of such 
processes. Contrary to the enormous literature about quasistatic creep crack 
growth, cf. Hui & Riedel [5], Chang et al. [2], Li et al. [7], Stamm & Walz 
[11], there exist only a few investigations on fast crack growth in viscoplastic 
materials. For example, Lo [8] using a power law presented some analytical 
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results for the antiplane shear case, while a purely numerical study was 
given by Östlund [10]. A numerical investigation based on the Gurson model 
can be found in [9]. 

In this paper, fast growth of a semi-infinite crack in a Perzyna-type vis- 
coplastic material is investigated. The assumed constitutive model is prefer- 
ably applicable at high strain rates [12]. First, a classical asymptotic crack 
tip field analysis is carried out. Analytical expressions for the r-dependence 
of stresses and strains are found, while the angular dependence is deter- 
mined numerically. The influence of the material parameters is discussed 
and conclusions are drawn e.g. about unloading regions and limit cases. 
Using a critical strain criterion a relation between the applied load and the 
crack speed is determined. 

In the second approach a damage yield strip model is applied. The con- 
stitutive behavior of the cohesive zone is described by Gurson's damage 
model in conjunction with the already mentioned Perzyna-type viscoplas- 
tic material law. The advantage is that no external fracture criterion is 
needed now. The governing system of equations is solved numerically. As 
results, the dependence of the cohesive zone stresses, the yield strip length 
and the crack driving force on the crack speed are discussed. Furthermore, 
conclusions on the temperature distribution on account of inelastic energy 
dissipation can be drawn. 

2.   Crack tip fields 

2.1.  BASIC EQUATIONS 

Consider a semi-infinite crack, propagating with crack tip speed v = a in a 
Perzyna-type viscoplastic material (fig. 1). The basic equations describing 
this problem are given by 

*j = 2 Ki + UJ-') 

£••-£?. +£?? ^ 

1.     ,  l-2i/. ,vP_l/Vh     X JiL 

and the boundary conditions (traction-free crack faces). The material pa- 
rameters are Young's modulus E, shear modulus p, Poisson's ratio v, yield 
stress k, a viscosity parameter 77, and the hardening exponent n > 1. 

Assuming singular crack tip stresses of the type 

<Tij(r,<p) = r%j(cp);        -\ < A < 0 (2) 
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Figure 1.    Moving crack tip 

the equations can be transformed to a moving coordinate system, fixed at 
the crack tip by setting (.)" = -w(.),i> (•)" = v2(-),u- From tnis system 
the strength of the singularity is determined directly by the same argu- 
ments as for the Hui-Riedel-field [5]. Since the elastic part of the strain 
rate dominates the viscoplastic one for n < 3 and both parts have the 
same singularity for n > 3, A is found to be the following function of the 
hardening exponent n: 

a) ee dominates:    A = — A ;       1 < n < 3 

b) otherwise: A = \ _ n     ;       n > 3 

For n < 3 the well known elastodynamic crack tip field (see [3]) is valid, 
while for n > 3 the stresses and displacements can be written as 

<Tij(r,<p)   =    [-—^) Mffy(v) (3) 

u«'(r'^)  =   [TIT) ruiW) • (4) 

Substitution of (3, 4) into the governing equations yields a system of non- 
linear differential equations for the angular distribution of the field quanti- 
ties, which has the structure 

M^ = f(Y,v>) (5) 

where Y=(üTtV,v,¥)iV,ärr,ävv>,äzz,ärifi,v,T,v,v)'T in plane strain (similar in 
plane stress). The matrix M and function f depend on Poisson's ratio v, 
the hardening exponent n and the Mach number m = v/cs, where c\ = fi/p 
is the shear wave velocity. After transformation into a nonlinear optimiza- 
tion problem and using a 5th order Runge-Kutta integration method the 
system (5) is solved numerically by a multiple shooting technique in con- 
junction with a specific optimization routine. By this, all field quantities 
can be determined in dependence on crack speed and material parameters. 
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It is remarked that the viscosity parameter 77 does not appear in (5). Con- 
sequently, the dimensionless field quantities cf,j, «,• are independent of TJ. 

Because the dependence on Poisson's ratio is weak, all calculations were 
carried out with v = 1/4. 

2.2.  RESULTS 

In figure 2 the angular variation of the stresses is depicted for different n and 
v/ca values. The results for n = 20 show a strong similarity to the known 
results for the ideal plastic material. Indeed, from a rigorous analysis   of 

.   0 
b oi- 

'—\          "^ 

0 
C , 1  

aoooo L5708 3.1416 

bei 

b oi- 

3.U16 

3.1416 

11416 

3.1416 

0.0000 3.1416 

Figure 2.    Stress distribution for n=5, n=20 and different v/c, 

the basic equations it can be seen that for n -+ 00 the ideal plastic results 
of Freund [3] are reproduced. In this context it might be interesting to note 
that for n = 3 and 77 -► 00 the linear elastic stress distribution is obtained 
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as well as for n < 3 independent on r). Also certain creep crack growth 
results may be obtained in the limit case v —► 0, see e.g. [2]. 
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Figure 3.    a) Unloading zone b) Small scale yielding 

The distribution of the equivalent stress indicates that unloading and 
reloading zones exist whose sizes depend weakly on n and the crack speed. 
As an example, the boundary angles between these zones (given by the 
condition &e = 0) are shown for m = v/cs = 0.4 in figure 3a in dependence 
on n for plane stress. In the unloading zone the material yields because ae 

exceeds y/3k. Contrary to other inelastic material models no pure elastic 
unloading zones exist at the crack tip in the Perzyna material. 

As for the Hui-Riedel-field, no external load parameter appears in (3), 
(4). Nevertheless, for small scale yielding, in analogy to [5] the crack tip field 
(3), (4) may be matched with the remote /('-determined field by adopting 
the strain fracture criterion ev

e
p{xcr) = e"£. In this manner a K{v) curve 

can be constructed, as plotted in nondimensional form in figure 3b for 
plane stress and the parameter set n = 4, \i = 84000 MPa, k = 300 MPa, 
p = 8000 kg/m3, r\ = 10_2s, eg? = 0.01, x„ = 0.05 mm (K = Arecr/xv/x^). 
There is a minimum load and a minimum speed below which no crack 
growth will occur. The upper branch is stable in the sense that the crack 
will accelerate or decelerate if its velocity is lower or higher than that given 
for a certain load level. The lower branch is unstable in the same sense. It 
can be seen that the crack velocity increases with increasing applied load K. 
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3.   Damage yield strip model 

3.1.  BASIC EQUATIONS 

Again, consider a crack tip loaded by an applied dynamic stress intensity 
factor Ku and running with constant speed ä through a plate. The lo- 
cal viscoplastic damage behavior now is described by a damage yield strip 
model or in other words by a specific cohesive model (fig. 4). According to 
this model the material behavior within the strip is described by the Gur- 
son model [4], [13], [14] in conjunction with the Perzyna-type law. Using 
the Gurson model, which describes the loss of stress carrying capacity by 
nucleation, growth and coalescence of microvoids, no external fracture cri- 
terion is needed. In onedimensional and modified form its constitutive equa- 
tions are given by [6], [15] 

df 
devP 

a   =    ca(l-qif*)(rM 

.-*(« 
:zi*V 
SN      ) 

•vp 

v Wo      / 

(6) 

where 

1 for plane stress 
|\/3   for plane strain 

cf 
for plane stress 
for plane strain 

Herein CTM, f and /* denote the microscopic stress, actual and effective 
void fraction respectively; a0, q\, fN, sN and eN are the initial yield stress 
and material parameters describing the interaction and nucleation of mi- 
crovoids. The effective /* is calculated from / by the common bilinear 
relation given in [13]. 

Figure 4-    Yield strip model 
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The relation between the viscoplastic strain and the opening displace- 
ment 6 within the strip is defined by 

e" = 1 (7) 
Op 

where bp is a finite but small length parameter. 
The area surrounding the yield strip is regarded to be linear elastic. 

Therefore, the mechanical problem can be solved by superposition of the 
elastodynamic .ft^-determined crack tip field and the field induced by the 
cohesive stresses. The last one is given by integrating the fundamental so- 
lution for a moving pair of concentrated forces acting on the crack surfaces 
at a constant distance from the crack tip [3]. The yield strip length rp is 
determined from the condition that the stress singularity at the crack tip 
(x = rp) must vanish. The following system of equations is obtained 

W** fegs-s^*^ dx* 

o 

(8) 

'\AP-x*       Wrp-X- Vrp-X*\ 

V 7T J  Jrp - x* 
o   v 

T/...      ä
2        (l + u)ad f     ¥ 

V^ = l*4adas-(l + a^    ^ = f " ? '    «*- 

where cd is the dilatational wave speed. 
The integration in (8) is carried out numerically by a special integration 

formula taking the singularity of the integrand into account. The obtained 
system of algebraic equations is solved by the Newton-Raphson-method in 
conjunction with parameter tracking. 

The stress work in the yield zone is mostly converted into heat, which 
might cause a significant local temperature rise in the vicinity of the crack 
tip. Using the viscoplastic work rate as the heat source the temperature rise 
AT can be calculated by integrating the fundamental solution of Fourier's 
equation given by Carslaw and Jaeger [1] 

AVP 

where x and y are coordinates related to the actual crack tip. Avp denotes 
the plastically deforming region, Xth and Kth are thermal condtictivity and 
diffusivity respectivly, KQ is the modified Oth-order Bessel function of the 
second kind and r — ^(x-x*)2+(y-y*)2. 
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3.2.  RESULTS 

Here, some results for the same pressure vessel steel as in section 2.2 as 
a material example are presented. In addition to the macroscopic material 
constants the following Gurson parameter set was chosen: /o = 0.0025, 
fc = 0.021, // = 0.19, gi = 1.5, fN = 0.01, eN = 0.3, sN = 0.1. In 
fig. 5, the stress <r, the viscoplastic strain £vp, the microscopic stress au 
and the void fraction / are plotted along the ligament for different crack tip 
velocities. It can be seen that with increasing velocity the maximum stress 
increases due to an increase in deformation rate. On the other hand, the 
viscoplastic strain at the physical crack is the same for all velocities, which 
can be explained by the fact that the void volume fraction is a function of 
the viscoplastic strain only. Thus, the ultimate void volume fraction for a 
total loss of stress carrying capacity can only be reached at a certain amount 
of plastic strain. Note that only a part of the yield strip opens while the 
other part remaines perfectly closed, so that the material behaves as linear 
elastic in a certain part of the cohesive zone. 

In fig. 6, the length r* of that part of the yield strip that opens is de- 
picted as a function of the crack tip velocity. This plastic zone size decreases 
with increasing velocity due to viscous effects. It vanishes if the Rayleigh 
wave velocity is reached. Conversely, the crack driving force G, calculated 
from the remote stress intensity factor Kid, becomes infinite if the crack 
tip velocity approaches the Rayleigh wave velocity. Neither vanishing yield 

Figure 5.    Yield strip quantities 
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Figure 6.    Active yield strip length and crack driving force 

strip length nor infinite crack driving force are obtained in a simplified 
quasistatic analysis, which neglects inertia terms (V = const.). 

As noted before, the viscoplastic work is converted into heat in the 
strip ahead of the crack tip. The resulting temperature rise is plotted in 
fig. 7 along the ligament for different velocities. A significant temperature 
rise, large enough to affect the fracture process, is observed. The thermal 
effect increases with crack speed and is strongly localised to the vicinity of 
the ligament and the crack faces. This can be seen from the contour plot 
showing the temperature distribution at a velocity of 100 m/s. 

    100 [m/q 
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 1000 KS 

~1—'—I— 
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Figure 7.    Temperature rise 
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1. Introduction 

The linearized couple-stress theory of elastic behavior, originating with the 
Cosserat brothers (1909), has induced considerable interest. A particularly 
comprehensive study of this theory is due to Mindlin and Tiersten (1962). 

A strain gradient theory of plasticity was recently introduced by Fleck 
and Hutchinson (1993) in the general framework of couple stress theory. 
The hardening originates from both statistically stored and geometrically 
necessary dislocations. The degree of hardening due to statistically stored 
dislocations is assumed to scale with the von Mises effective strain. Hard- 
ening due to geometrically necessary dislocations is taken to scale with an 
isotropic scalar measure of the strain gradient in the deformed solid, and 
with a material length parameter L Two versions, namely, deformation 
and flow theory versions, are formulated. The theory can explain a size 
dependence on strength and compares favorably with tension and torsion 
experiments on thin copper wires (Fleck et al., 1994). 

The present paper aims at the investigation of the near-tip fields for 
opening mode cracks in the couple-stress theory. The outline is as follows. 
In Section 1.1 is given a recapitulation of the couple stress theory. In Section 
2 a general investigation of the near-tip field in elastic material is made. 
The near-tno fields can be characterized by two independent parameters. 
In Section 3 is studied crack-tip plasticity of deformation type with strain 
gradient effects without interrelation between the Cauchy stress-strain and 
the couple stress-curvature constitutive relations. Section 4 is devoted to 
crack-tip plasticity according to the theory of Fleck and Hutchinson (1993) 
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with the above mentioned interrelation. 

1.1. RECAPITULATION OF COUPLE STRESS THEORY 

Throughout the paper the notations of Fleck and Hutchinson (1995) 
will be followed. The unsymmetric Cauchy stress t is decomposed into a 
symmetric part tr and an antisymmetric part T. The force traction vector 
T on a plane with unit normal n is related to the Cauchy stress by (in 
dyadic and in Cartesian coordinates forms, respectively) 

T = n-t = n-(flr + r),        Tj = nfa = n.i(<xii7- +%). (1.1) 

Similarly the couple-stress traction vector q is related to the couple-stress 
tensor m by 

q = n • m,        qj = rurriij (1.2) 

where m is assumed to be deviatoric. 
Equilibrium of forces within the body gives 

V t = V-(o- + r) = 0,        tjij = tTjij + Tjij = 0 (1.3) 

and equilibrium of moments gives 

V • m + e : r = 0,        mjij + eikiTki = 0 (1.4) 

where e is the permutation tensor, and we have neglected the presence of 
body forces and body couples. 

The rotation u> and the curvature x are defined as, respectively, 

u; = -e: (Vu) = -V x u,        w{ = -eijkukj (1.5) 

and 
X = wV,        Xij = Vij- (1-6) 

The curvature tensor x can De expressed in terms of the strain gradients 
as 

Xij = eikieji,k- (1-7) 

(1.7) is called the x ~ e compatibility equations. 
The deformation version of the couple stress (or strain gradient) theory 

can be formulated by means of the strain energy density W : 

W = W(ee,£Xe,em) (1.8) 
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where se=(2er: e'/Z)1/2- the von Mises strain invariant (e' denoting the 

strain deviator), Xe=(^X '■ x/3)1/2- the cnrvature invariant and em = ekk 

- the volnmetric strain. 
The Cauchy stress and couple stress are given by 

aw        ,        aw 

For linearized couple stress theory to be studied in Section 2, the strain 
energy density (1.8) is taken as 

W=Z-G(el+e\l) + lKel (1.10) 

where G = E/2(l + u) and K = E/Z(l -2v) are respective^ the shear and 
bulk moduli of the solid. 

For strain gradient theory of plasticity in the study of Section 3, we 
assume "separate laws of hardening" for Cauchy stress and for couple stress 

where <re = (|s : s^is the von Mises effective stress , and rtif. = (|m: m)ä 
the analogous effective couple stress, s is the deviator of the symmetric 
part er of Cauchy stress. The strain energy density (1.8) is taken as 

n 
W=——CT0 71 + 1 

+ -Kel. (1.12) 

Finally, Section 4 is devoted to the study based on the strain gradi- 
ent theory of plasticity introduced by Fleck and Hutchinson (1993) with 
interrelated law of hardening : 

=(£)• (1.13) 

where 
£>=sl+e\l,        E*=af+rtn». (1.14) 

The corresponding expression for strain energy density is 

W = JLf&**+ \Kfm. (1.15) 
n +1 2 
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For states of plane strain (as is the case of Sections 2—4) parallel to 
the plane x$ = 0, we have 

wa = szi = ea = xa = X*ß = 0, ,. „» 

*3a = *o3 = «*33 = ™xxß = 0 

where the Greek indices range over 1,2. We introduce the abridged symbols 

w = us,        x<* = X3a,        "*» = m.^. (1-17) 

We can prove the path independent j7-integral for any path T surrounding 
the crack tip (with crack surfaces free of load): 

J = J(Wm - 7luiA - qiu^ds. (1.18) 

It should be noted that the strain gradient theory of plasticity with 
separate strain energy density W (1.12) can also predict a size dependence 
of the strength, which also compares favorabry with tension and torsion 
experiments on thin copper wires ( Fleck et aL, 1994 ). 

2. Near-Tip Fields in Elastic Material 

Substituting the strain energy density expression (1.10) into (1.9) gives the 
elastic constitutive relations for elastic materials. For plane strain problems 
(©33 = 0), we have 

Saß = zG^aß ~ VÖaßfT^), Xa = ~^QJäm<*- (2"1) 

In polar coordinates, centered at the crack tip, the expressions for 
strains, rotation and curvatures are 

(2.2) 

(2.3) 

(2.4) 

err — 
3ur                    1 due     ur 

dr                    r do       r 
1 (\dur     due     ue\ 

= 2 \r~de + ~dr ~ ~r~) 

u 
1 (due 

~   2\dr 
ldur     u&\ 
r dO       r J 

Xr 
du 
dr' 

\du 
Xe~ rdO' 
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Equilibrium of forces and moments, (1.3) and (1.4) gives, in polar co- 
ordinate form, 

dtrr     1 dter     trr -tee    _   Q 

dr      r 86 r 
g?g + lgjgg+**> + <*•   =   0 (2.5) 
&r  ^r dB r V     ' 

dm?     1 dmo     rrw .     . 

*«-*» + -& +;-u+T = °- (2-6) 

The expression (1.7) of curvature in terms of strain gradients (or e ~ x 
compatibility) is simplified to 

— ^Sr0 _ l^fzz. ■ ogre 

*"I  *  ,/* r (2-7) oeee     1 ctere     egg — err 
Xe = -FT- ---5S- + dr       r 96 r 

From (2.4) we have the ^-compatibility equation: 

%-!<-») = «. M 
Assume the near-tip asymptotic expansion for stresses (with Greek sub- 

scripts ranging over r, 6) 

WM) = *i>K + 4>)rP+1/2 + • • • 
^77^(r,0) = rr£\e)rP + tni1}(Ö)rP+V2 +... 

We shall consider the first leading term in asymptotic expansions. Equilib- 
rium of forces (2.5) leads to (hereafter prime means derivative with respect 
to6) 

Equilibrium of moments (2.6) dictates 

mfy(e) = -{p + l)mi°He). (2.11) 

The x ~ s compatibility equation (2.7) takes the asymptotic forms: 

ip+2)e%\e)-ei°y(e) = o 
(P+I).S

)
W-S

,
W-S

)
'W=O. ^ } 
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The x compatibility (2.8) gives 

mW{6) = (p + \)mf\e). (2.13) 

The finiteness of the ^-integral (1.18) requires p = -1/2. We easily 
obtain the following results: 

irr = r4s(0)(3^cosf-^cosf)+o(r-V2) 

tee = r4ß(0)(^cosf + ^cosf)+o(rV)     (2.14) 

U = r-^(0)(-^^sin| + ^sinf)+o(r-V2) 

ter = r-hBw{^sm§ + 7-^smf)+o(r-V*) ; 

*-V = r-U<°) sin f+0(r-V2) 

e-*mo = r"U(°) cos § + o(r"V2). 

The rotation w and displacements ua can be found from the known stress 
field: 

a; = r^^-U(°)sin|+0(r1/2) ; (2.16) 

ue   =   r^(-^sinf + ^sinf)+0(rV2).       {2A7) 

Sternberg and Muki (1967) solved the stress distribution in a linear 
couple stress solid due to a transverse crack of finite length 2o in an all- 
round infinite body that is otherwise in a state of uniform uni-axial tension 
to at right angles to the plane of the crack. The near-tip stress fields 
obtained by a limiting process from their equation (4.4) agree completely 
with our equations (2.14) and (2.15), if the constants A^ and B^ are 
given the values 

eA(Q) _      ri      frv^... ß(0)_i?_Wo 
tA     ~2{l-u)  y/2    ' l-i/ V5 

where Ti and T2 are parameters depending on the ratio £/a. 
Substituting the near-tip expressions for quantities occurring in J- 

integral (1.18), we get after some lengthy calculation 

7-—V-K2- - (l-,)(Z-2,)(B^y + l(A^) (2.18) 
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Here Kj is the far field stress intensity factor. Hence the near-tip field is 
characterized by two parameters A^ and B^°\ whose valnes cannot be 
determined from the local asymptotic analysis. 

3. Near-Tip Fields Based on Strain-Gradient Theory of Plas- 
ticity with Separate Laws of Hardening 

The strain energy density (1.12) substituted into (1.9), gives the constitu- 
tive relations 

iv.._ 3 filler-1 <-!^i 
cAtj — 2 V    (T0     ) <T0     ' 

(3.1) 

Confining ourselves to the first dominating term of near-tip fields, we as- 
sume 

*i>o = i0)(ö)r" 
^"W^o = rrrg\e)rr. 

(3.2) 

The angular distribution functions for the dominating term are labeled with 
the superscript (0). If stresses have singularity at the crack tip (i.e. p < 0), 
the plane strain condition £33 = 0, from (3.1)i and noting n > 1, leads to 

s$ = 0, so the in-plane components of constitutive relations (3.1) are 

(3.3) 

,(°)/ .(°)/ ,(°)/ where tri'(6), s^(6) and m4 '(6) are the angular functions of <rc, saß and 

3.1. SOLUTION FOR CAUCHY STRESSES 

Relations (2.10) are still valid as the dominate equations. Substituting 
(3.3) into the e ~ x compatibility equation (2.7) gives 

dß 
d_ 
dß 

(^W) 
(^W) 

n~J    (0) 

s<?){6) 

re ifl) 

,(0) w 
= -(nP+2)(40)(e))n_14°)(e) 

(3.4) 
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Solving simultaneously (2.10) and (3.4) for 4 unknowns trr'(6), tgj(6), 

tfg(0), tfj(0), and noting the symmetry about 6 = 0, we obtain 

&\6) = 3«°) cospd + C(0) 2fr + *>   cos(np + 2)6 
np+p + 2      v (3 5) 

4°>) = -JSWsinpg + CW  2(y + 1)
0sin(np + 2)g er w * np + p + 2      K ' 

where B^ and C^ are integration constants. The traction-free boundary 

conditions, t]$(ir) = $(*) = 0, lead to sin(n + l)jw = 0,for the deter- 
mination of eigenvalue of p . The boundedness of the ,7-integral (1.18) 
dictates p > — l/(n + 1), hence we have 

p=—i_,        C*» = Ü^IjjG». (3.6) 
n +1 2ra 

Then the dominant Cauchy stresses are summarized as follows 

Ur/CTO = T^ B& (cOS (&A - 1 COS (^) } 

W<r0 = r-^ß(°) jcos (4T) +cos (Mf*)} 

W*> = r"^ß(°) {sin (4^) + sin (gf *) } . 

(3.7) 

3.2. SOLUTION FOR COUPLE STRESSES 

Equation (2.11) is still valid* as the dominant equation of equilibrium of 
moments. Substituting the curvatures \a from (3.3)2 in*0 the ^-compatibility 
equation (2.8) gives 

dB 

n-l 

(»40)(«))    »40)W = (»p+1) H?W) " "«JV)     (»•«) 

where p is given by (3.6). The solution of (2.11) and (3.8) satisfying symme- 
try condition nv(0) = 0 and traction-free boundary condition rr^(Tr) = 0 
can be easily found. Then the couple stress fields may be written as 

e-^/cro   =   r-VK')i(o) [| (l + £) + \ (l - £) • 

*" W<*    =   r-^)# [| (l + *) + | (l - *) • ^ j 

cos 2(6» - p(0))]^kn cos p(0) 
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where A^ is an integration constant, and 

<M = 2 0_sm-i(u_Jsm0) 
n+1 . 

The rotation u> and displacement ua can be easily obtained. 

CO 

w    =    _rl/(«+l)(n + 1)(^)"+,(«±l)B|S(0)|n. 

(signß(°))cos(^±fö) 

to   =   rV(^)(ra+l)(f)n+1(n±l)'l|ß(o)|n. 

(signßW)sin(^fe) 

•V(M-i)(n + 1} (|)
(n+1)/2 | A<® |- (sign^Wj • _     rl/(n- 

sin </?(#). 

(3.10) 

(3.11) 

(3.12) 

Figure 1: Curves of 7i(n) and hin). 

The value of jT-integral can be found from (1.18) : 

J = rr0 [| ^(0) |n+1 h(n)+ \ B® |n+1 72(n)] 

where 

(3.13) 
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7lW   =   2(l)(",)/2|[i(l + 4,)+i(l-4,)coS2(S-^))],/I 

fjJty cos e " sin(v?(Ö) - 0) sin y>(0)] «W 

Ji(ra) and I2(n) are shown in Figure 1. 
(3.14) 

Figure 2: Angular distribution of Cauchy stress (ra = 3 ). 
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Figure 3: Angular distribution of couple stress (n = 3). 
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The angular distribution functions for Cauchy stress components vap(&) 

and couple stress mi, '(6), normalized by means of max Oe  (6) and max 
U 0 

mi  (0), respectivery, are shown in Figures 2 and 3 (n = 3). 

Remark 1. It should be noted that according to the dominant near-tip 
asymptotic solution in the foim of products of functions of r and 0, the 
loading history is basically proportional. So the above results, obtained 
based on the deformation theory version, remain valid for the flow theory 
version of gradient theory of plasticity (Fleck and HutcMnson, 1993). 

4. Near-Tip Fields Based on Strain-Gradient Theory of Plas- 
ticity with Interrelated Law of Hardening (Fleck and Hutchin- 
son, 1993) 

According to Fleck and Hutchinson (1993), the strain energy density W in 
the form (1.15) leads to the constitutive relations 

eV ~ 2 {^) So" + -ZE-Vkkbxj 

*Aij — 2 \1^) So 

in which S is given by (1.14). 
Similar to (3.2), we assume the asymptotic expansion with equal dom- 

inance (i.e., same singularity) of Cauchy and couple stresses 

VSo = 4?(öK 

If stress has singularity at crack tip (p < 0), the plane strain condition 
e33 = 0, from (4.1)i and noting n > 1, leads to «33 = 0, and the material 
behaves asymptotically as incompressible. 

By the same way as in deriving (3.4), we get the leading term of the 
e ~ x compatibility equation (2.7) 

(S(°)(0)yi-\<°>) 
= (nP + 2)(s(°)(0))n-\(°>) 

= -(nP+2)(^)(e))n-1si°1)(e) 
(4.3) 

where 

(S(°)(0))2   =   (4>))2 + (™e>))\ (4-4) 
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As the counterpart of (3.8), the ^-compatibility equation (2.8) takes the 
form 

± [(S(°)(ö))ri"1 m(°)(0)] = {up + 1) (S(°)(ö))n_1 mf\6). (4.5) 

Equations (2.11), (4.3) and (4.5) furnish 4 simultaneous differential equa- 
tions for 4 unknowns. Their nontrivial solutions can be expressed in terms 
of two functions c{6) (0 < c{6) < TT/2) and m^(6) (0 < m{6) < 2TT) : 

sW(6)   =   (SignA*)^°He)smc(e)coS(np + 2)e 

e%\e)   =   -(signA*)J-S(°)(e)sinC(ö)sin(np + 2)Ö 

mfXe)   =   ^§£(°)(0)cosC(0)cosm(0) 

where A* is an arbitrary constant, and 

2(0) =| A* | (VZ/ sin c($))1/H. (4.8) 

The two functions c(0) and m(6) satisfy the equations 

— [S(°)(e)cosc(0)cosm(0)] = -(p + l)£(°)(0)cosc(0)sinm(0) 

— (E(°)(Ö))ncosc(Ö)sinm(ö)] = (np + 1) (E(0)
(*))"cosc(0)cosm(0). 

subject to the symmetry and boundary conditions : 

m(0) = 0,        cosm(7r) = 0. (4.10) 

The dominant equation of equilibrium of forces (2.10) can be solved for 

t£J(6) and 4°V) (wi*11 symmetry with respect to the line 6 = 0). 

4J(0)   =   JD<°>COSI>0 + 2(P + 1)- 

tf£}(6)   =   -D^smPe-2(p + l)- 
£ [s?) (£) cospfc -6) + ,%\t) sinp(£ - 0)] dZ 

subject to the traction-free boundary conditions : 
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The finiteness of the ^-integral requires p = —l/(n + l). Eliminating D^ 
from the expressions of (4.12) obtained by use of (4.11) and (4.6), we get 
the condition 

r (sin c(£)) ^ cos £d£ = 0. (4.13) 

Our problem is to solve (4.9) subject to conditions (4.10) and (4.13). Nu- 
merical computation shows that no solution exists. Hence we are led to 
the conclusion that for the material obeying Fleck and Hutchinson's strain 
gradient theory of plasticity, the Cauchy stress and couple stress do not 
have the same order of singularity. It can be seen 

i. if the Cauchy stress predominates, we have the solution (3.7), (3.11) 
with the parameter B^ / 0 and A^ = 0; 

ii. otherwise, if the couple stress predominates, we have the solution 
(3.9), (3.12) with the parameter A^ ^ 0 and ß(°) = 0. 
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Abstract 

Damage evolution and time-to-failure are investigated for a model material in 
which damage formation is a stochastic event  Specifically, the probability of 

failure at any site i at time t is « o^t)7) where Oj(t) is the local stress at site i at 
time t, and differs from the applied stress because of the stress redistribution 
from prior damage. Numerical simulations in 2-dimensional systems 
demonstrate interesting and non-linear behavior. Of particular interest is i\*3, 
for which failure occurs by rapid damage growth after a "nucleation" period 
during which a large damage cluster develops to the critical size. An analytic 
model of the damage process predicts this "avalanche" failure, as well as (i) 
more abrupt failure with increasing r\, (ii) failure times scaling inversely with 
system size, and (iii) broadening of the distribution of failure times, so that the 
failure becomes less predictable. These features are all observed in the 
simulations. The model also predicts the onset time for the rapid growth, 
offering the possibility of early detection of impending failure. 

1. Introduction 

Failure under load is a major limitation to the application of many materials, 
especially structural materials at elevated temperatures. Understanding the 
mechanisms by which damage forms, coalesces, and drives failure, and the time 
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scales for these phenomena, is thus an important area of research. That these 
phenomena are non-linear in time and stress makes the development of 
predictive models of damage accumulation particularly challenging. 

Here, we focus on understanding the details of damage evolution and 
failure in systems for which the "damage" is a probabilistic, nucleated event that 
is driven by local stress. One material which appears to behave in this manner 
is the composite Si/SiC.[l] Under load at elevated temperatures, cavities form 
in this material between SiC/SiC grain boundary facets. The cavities extend 
across the entire grain boundary and the rate of cavitation is strongly dependent 
on the level of applied stress. Furthermore, the spatial distribution of cavities is 
not random; clustering occurs in the form of arrays of cavities in planes roughly 
perpendicular to the tensile load axis. The cavity arrays are not formed by the 
slow crack growth mechanism operative in many ceramics at elevated 
temperatures and high loads because the cavities are physically disconnected. 
The cavities lead to strengtii degradation with time, and ultimately a sufficiently 
large cavity forms such that macroscopic failure occurs. The progression of 
damage in time and the dependence of failure time on microscopic aspects of the 
damage formation are general features occurring in many materials and motivate 
the study of models to predict a material's remaining strength and reliability. 

2. Model of Damage Evolution 

In developing a model which is sufficiently general but relevant to materials 
such as Si/SiC, we first recognize several key features of the deformation and 
damage. First, the presence of fully-extended cavities suggests that cavity 
formation is controlled by a critical nucleation step, and is thus a probabilistic 
event Second, the sensitivity of cavitation rate to stress and the observation of 
cavity clustering both suggest that this cavitation rate is dependent on the local 
stress acting across each grain boundary at any given time. We thus consider an 
elastic material consisting of an ordered array of connected, cavitatable sites. 
At each site i, the local (tensile) stress Oj(t) consists of the applied load plus 
additional loads transferred to site i due to previous cavitation damage at other 
sites. The cavitation rate rj(t) (probability of cavitation per unit time) is 
assumed to have power-law dependence on the local stress: 

Here, A is a rate prefactor and the exponent v\ determines the sensitivity of the 
cavitation rate to applied stress. A power-law rate generates a power-law 
dependence of strain rate on applied stress, as observed in Si/SiC.[l] 

The evolution of damage in an array of sites obeying Eq. 1 can be 
surprisingly complex. Initially, the material is undamaged and all sites have the 
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same cavitation rate. However, once cavities form the stress distribution in the 
material is non-uniform and the rates are no longer equal. The stress 
redistribution around the existing cavities tends to increase the stress at nearby 
sites in the plane perpendicular to the applied load The cavities are considered 
to be blunted cracks or voids so that the stress transfer occurs gradually over a 
length scale comparable to the grain boundaries themselves. The enhanced 
stress preferentially drives cavitation at sites near to the existing cavities, but at 
least initially there are many more sites remote from the existing cavities subject 
to essentially the applied stress. The location of subsequent cavities must be 
determined probabilistically, and each site i has a relative rate given by ri(t)/2 
rj(t). The typical time At required to form the next cavity is simply the inverse 
of the sum of the rates, At=l/2rj(t). As time and cavitation proceed, cavity 
clusters form and the stress at the tips of larger cavities is generally larger than 
that at smaller cavities. This stress enhancement continues to drive the 
formation of larger cavities faster than smaller cavities, but is mitigated against 
by the greater number of smaller cavities and/or uncavitated sites. Cavitation 
continues until failure, where one cavity cluster spans the entire length of the 
system - no explicit condition for the onset of actual crack growth is considered. 

Numerical simulations of this failure process provide insight into the 
richness of the damage evolution versus various parameters. We have utilized a 
two-dimensional triangular network of elastic springs as a mechanical model [2] 
for studying the damage evolution. In this model, all springs are linear and 
cavities are represented by "broken" or removed springs. The stress distribution 
for the evolving array of "cavities" is determined numerically, and the 
appearance of each successive cavity is determined by the relative rates as 
described above. The numerical simulation can monitor elastic strain under 
constant applied load, failure time, number of cavities vs time, and other 
measures of the damage. 

Results for the elastic strain versus dimensionless time lAo^n1! are shown 
in Figure 1 for a fixed lattice size of 20x20 nodes (760 springs under tensile 
stress initially) and various values of r|. For small T|, the damage evolution and 
accumulated strain are very gradual. For larger r\, the accumulated strain 
increases slowly at early times, but after some "incubation" time begins to 
increase very rapidly in what we term an "avalanche" failure, wherein one single 
large cavity cluster propagates rapidly across the entire material in a fairly short 
time. Figure 1 also indicates the rough range of the observed (stochastic) failure 
time. Notice that although the failure time becomes shorter with increasing r\, it 
also becomes much more abrupt but with a broad spread in failure times. 
Materials with large r\ thus exhibit very little non-linear deformation until just 
prior to failure and then rapidly fail, with the distribution of failure times being 
broad relative to the average failure time. Figure 2 shows the approximate 
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Figure 1. Elastic strain versus dimensionless time for fixed system size of 
20x20 nodes (760 springs under initial tension), at various r\. Several statistical 
realizations are shown at each r\. 

Figure 2.   Elastic strain versus dimensionless time at fixed -q=8 and various 
system sizes for realizations failing at about the mean time for each size. 
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failure time for a fixed r\ but as a function of system size Nj, from which it is 
also clear that increasing the system size leads to decreasing failure times. 

Hansen et al. studied the accumulated damage at failure in simulation 
studies of electrical fuse networks [3]. For T)s2, Hansen et al. found a linear 
dependence of total damage on system size, Nf « Nt. However, for TI>2 they 

found a sublinear dependence, Nf « NtY, with y<l and decreasing with 
increasing r\. These results suggest that these two regimes of r\ correspond to 
intrinsically different modes of failure: percolation-like and avalanche-like. 

3. Analytic Model for Damage and Failure 

To make analytic progress on understanding the subtle aspects uncovered by 
numerical simulations, and experimental results on materials such as Si/SiC, 
requires an approximate analysis which retains the key physics. We recognize 
that the damage rate is highest at the tips (perimeter) of existing damage. We 
therefore focus on these tip sites by assuming that all sites in the system are 
either (i) tip sites, at the tip of a cluster of size c units and under an enhanced 
stress denoted o0 (ii) damaged sites in the cavity clusters themselves, which 
carry no stress, and (iii) all remaining non-tip,non-damaged sites, under only the 
applied stress aapp. This division of sites into three categories eliminates long- 
range interactions between existing damage. We also neglect the linking 
together of two existing clusters. Then, the quantity to determine is the cluster 
size distribution N(c,t), the number of size c clusters at time t. Within the 
assumptions above, size c clusters can only form via the growth of size c-1 
clusters and can only be lost by growth to size c+1 clusters. Hence, the 
evolution of N(c,t) follows a Master Equation, 

^^«Mo;   .N{c-\,t)-zAay{c,t)    , (2) 
dt C~L c 

where the growth rate of a size c cluster is zAo^\ with z being the number of 
possible growth sites at the tip of the cluster (e.g. z=2 for a 1-d line, z=4 for the 
triangular lattice). For c=l, we note that o^-l and N(0,t), the number of "size 
0" cavities, is precisely the number of non-damaged, non-tip sites: 

N(0,t)-Nt-l(c + z)N(c,t) . (3) 

Defining a dimensionless time x=tAa&pp^ and recognizing that the stress 
enhancement is generally proportional to the applied field, o^KcOgpp where 
KQ is the stress concentration factor at each of the z tip sites a size-c cluster, 
allows us to rewrite Eq. 2 in the non-dimensional form 

^^ - «c-l^(c"Lx)" ac*(c*)       > (4) dx 
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where a   - zK^ is the dimensionless growth rate. With N(c,t) in hand from Eq. 

4, many quantities can be determined.   The elastic modulus vs time is given 
within the mean-field approximation as 

E(t)~E0{l-j^Zc2N(c,t)}    , (5) 

where ß is a constant ((1-V)
2

JC/4 in a continuum elastic model) [4]. The elastic 
strain at fixed applied load is then simply e(r) - aapp /E(t). The typical largest 

cluster of damage at any time, denoted c (t), satisfies 
IN(c,t)-l     , (6) 

c=c 
i.e. there exists one cluster at least as large as c* at time t. The fracture strength 
as a function of time depends on the stress concentration factor and the largest 
crack as S^ocl/Kc* . Complete material failure occurs when the largest crack 
is equal to the linear length of the system, c*=L. From a probabilistic 
standpoint, the probability of failure is obtained by simple weak-link 
considerations to be 

P/(0 = l-exp(-^(L,0) • (7) 

The major properties of interest thus stem from knowledge of N(c,t). 
The solutions to the coupled set of equations for N(c,t) can be obtained 

analytically by using Laplace transforms and by approximating N(0,t)=Nt [5]. 
Of particular interest are two limiting cases, corresponding to short and long 
times for any crack size c. In the limit a^ryc«! the solution is a simple 
product, 

tf(c,T)-(Cn^f)TC (8) 
cM c 

and so N(c,x) is rapidly decreasing for cluster sizes c and times T in this regime. 
In the long-time limit a^x/c»! the solution becomes 

N(c,x)*a?     . (9) 
The largest cluster size c* can be rewritten from Eq. 6 using Eqs. 4 as 

x 
fdt'a^^Nic*-^)-!     . (10) 
0 

Hence, as the largest cluster enters the long-time regime of Eq. 9, it is clear that 
to satisfy Eq. 10 the c* must increase rapidly with time. This rapid growth is 
the avalanche observed in the simulations and always occurs if "long times" can 
be reached such that Eq. 9 pertains. 

We apply the above model to understand the simulation results performed 
on spring/fuse networks. In these cases, the stress concentration factors scale 
essentially as the square root of cluster size, and we take the form 
Kc=(l+l/z)c1/2.  This form distributes the stress of a size 1 cavity equally to 
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the z neighbors at its tips, and for larger clusters the desired square-root 
dependence obtains. 

We have previously shown that Eqs. 4 explain the fundamentally different 
failure behaviors observed for TJS2 and r)>2, and that our predictions agree 
quantitatively with the simulation results of Hansen et al.[6]. In short, for i\&2, 
the short-time limit o^-tAxl applies to all cluster sizes up to the failure time. 
Failure occurs by a gradual proliferation of small damage which ultimately does 
link together to form a large crack, estimated as the time at which E(xf)=0. For 
r)>2, the long-time limit can be reached prior to failure, and one large cluster 
then grows rapidly across the material to cause failure. For larger system sizes 
a sufficently large cluster, and hence failure, occurs at earlier times. 

The evolution of modulus, strain, and failure time distribution can be 
calculated from Eqs. 4 and subsequent equations, but these do not provide any 
physical insight into those factors and events which control the time-to-failure 
and its distribution versus Nt and r\ for r\>2. In addition, one would like to 
identify any signature of incipient failure so as to anticipate failure in any one 
sample, and one would like such a signature to have the same size and r\ 
dependence as the failure time itself. Since in the avalanche regime (r)>2), one 
single large "crack" ultimately controls the failure, we focus on this cluster. 
Now once a single crack of sufficient size (as yet unknown) emerges from the 
smaller crack distribution, it tends to propagate without any "supply" from 
smaller crack sizes. To follow the evolution of this one large crack, we take the 
definition of c*(t) from Eq. 6 and differentiate with respect to time and then 
utilize the Master equation itself, Eq. 4, to obtain the growth rate of the largest 
crack as 

dc* 

dx       c 

'a^ *N(c*-lW 

ac»tf(c*,x) 

where the final approximation comes from applying Eq. 9 at long times. Eq. 11 
can then be integrated directly, given the boundary condition c*(tf)=L and the 
KQ from above, to yield 

1 

c*(x) = L 1 + 
*(l + W-D(x/-*))l-a 

1-a 
L   2 

2 
(12) 

However, such a solution is at best accurate only at times for which a^x / c* > 1 

because no single large crack appears in the short-time limit. We postulate that 
Eq. 12 is accurate back to an onset time x*, 

^x*«l      . (13) 
c* 
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This is equivalent to assuming that as soon as the largest crack leaves the short- 
time regime, it then grows forward to failure in a time Xf-x . The accuracy of 
Eq. 12 down to the time determined by Eq. 13 is demonstrated in Figure 3 by 
comparison to the full results. Solving Eqs. 12 and 13 simultaneously for x 
leads to the remarkable result 

x*-(l-tytf, (14) 

neglecting factors which are vanishingly small for large system sizes, x marks 
the onset of the "avalanche" leading to failure, and Eq. 14 implies that the size 
scaling of the real failure time Xf is then identical to that of the onset time x . 

To obtain the scaling of x* with system size, we return to the short-time 
solutions for N(c*,x*). Setting N(c*,x*)=l using Eq. 8 and solving this 
simultaneously with Eq. 13 then yields 

x* *[ln(Nt)f-2 , (15) 

and by Eq. 14 the failure time Xf scales similarly. The critical cluster size C 
which begins the avalanche at time x also is obtained as 

-^   • w> 
neglecting corrections which are negligible for large system sizes. From Eqs. 15 
and 16 we see that the time-to-failure is predicted to decrease with increasing 
system size, as observed in the simulations. Also, the critical crack size C 
which initiates the avalanche grows only very slowly with system size, and 
decreases with increasing rj. Neglect of cluster-cluster interactions and limiting 
cluster shapes to a quasi-linear form are reinforced by the predicted small values 
of C [7]. 

A final important prediction regards the failure time distribution. Since the 
mean failure time Xf is determined by the formation of the C cluster at x , we 
postulate that the failure time distribution is controlled by the probability of 
appearance of the size C crack vs. time. The C cluster may appear earlier than, 
or later than, the typical time x*, but once formed grows to failure in the fixed 
time Xf-x*. The cumulative probability of forming a size C cluster versus time 
is 

P(c,x)=l-exp(-^(c,x)) , (17) 

and at time x* the probability is 0.632. The corresponding probability of 
complete failure is then obtained by a rigid shift of this cumulative probability 
forward in time by the amount Xfx : 

Pf(x)-P(c,x-^xf) , (18) 
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Figure 3. Largest crack c* versus time for T|=4 at sizes NplO^ and 10^: full 
result from Eq. 4 ( ); approximation of Eq. 12 ( ). Also shown as 
the decreasing solid line is the condition acx I c «1; the onset of the avalanche 

occurs at the intersection of this curve with C*(T) and graphically illustrates the 
onset time T* and critical cluster size £. 
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Figure 4.  Probability of failure vs time from Eqs. 4 and 7 ( ) for T|=4, 
Nt=lC*; probability of obtaining the critical cluster c vs. time ( ); and 
predicted probability of failure by rigid shift of critical cluster result by Xf-x*- 
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where Xf refers to the typical failure time so that Pf(xf)=0.632. The failure time 
distribution determined from the full numerical results of Eqs. 4 is shown in 
Figure 4 along with the values obtained by a rigid shift of Eq. 17, and the 
agreement is extremely good. Over the middle range of the probability 
distribution, then, the failure is controlled by the appearance of the C cluster. 
At lower probabilities, there is some deviation and the predicted probability of 
failure is not conservative, but we are developing an even more accurate 
description of the full failure time distribution which will rectify this deviation. 

Using the short-time solution N(C,x) « xc, the failure probability is 
approximately Weibull in form with the critical size C as the Weibull modulus. 

The predictions of Eqs. 15-18 have the following further implications for 
the failure time distribution. First, at fixed system size Nf, increasing r\ 
decreases the failure time and also makes failure more abrupt (the time span 
between x* and Xf decreases). This is consistent with the results of Figure 1. 
Second, at fixed r\ we find C increases with increasing system size such that the 
probability of failure becomes narrower in absolute terms; however, the variance 
becomes larger since the distribution width scales like C but the failure time 
scales like x*; hence the uncertainty in failure times is generally an increasing 
function of system size. This behavior is consistent with the results in Figure 2. 

4. Discussion 

The essence of the complex time-dependent failure by nucleated damage is 
captured by the analytical model. We have found subtle relationships between 
the macroscopically measured failure time, failure time distribution, critical 
cluster size, and the underlying non-linear driving factor TI and system size. The 
details of the predicted scalings have not yet been fully compared to numerical 
simulations, but the trends in behavior are very consistent with the simulation 
results to date. 

A similar model of damage evolution was previously considered by 
Phoenix and Tierney (P&T) and various asymptotic results were derived for, 
essentially, large r\ [8]. The P&T results are equivalent to the short-time limit 
only, and therefore do not capture the full dynamics of the avalanche failure. 
P&T postulated that global failure occurs at the time x*, where the short-time 
solutions breakdown completely. Interestingly, in the present work (which can 
be formulated as the exact solution to the problem posed by P&T, including 
cluster linking [5]) we find that the behavior around x is the controlling 
behavior, since x* and Xf scale similarly. In using the short-time solutions for x 
and C to obtain the scaling behavior, we then obtain predictions similar to those 
of P&T.   However, the key Eq. 14 shows that there exists a time margin 
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between reaching the onset time x* and the failure time Tf, a margin that can be 
critical in anticipating failure. The macroscopic conditions (strain, strain rate, 
etc.) prevailing around x* will be the subject of future investigation to determine 
if the onset of avalanche failure can be identified macroscopically. Such an 
identification may be difficult, because at lower t\ the transition is not abrupt, 
but is critical for applying the theory to assess remaining life in real materials. 

Acknowledgment: The authors thank the National Science Foundation for 
support of this work through grant DMR-9420831. 
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1.   Introduction 

The division between "structure-sensitive properties", such as brittle frac- 
ture and "structure-insensitive properties", such as the effective elastic 
moduli of a weakly disordered materials is a rather murky one. There are 
many properties which lie on the border between these limits and some 
properties which are of one sort on one length scale while being of the 
other sort on longer length scales. In this paper, we make the definition of 
"structure-sensitive" to mean that the property in question depends on the 
length scale in a "non-linear" or "non-Euclidian" manner. We take as three 
examples: the tensile fracture strength of inhomogeneous materials; the 
elastic moduli and topology of stress-bearing paths near the rigidity thresh- 
old; and the topology of minimal surfaces in disordered systems. These 
properties and others which are "structure-sensitive" are not amenable to 
treatment by usual "homogenization" methods and so require a new set of 
tools and ideas in their analysis. As well as large scale computation, the 
ideas of scaling, self-similarity, fractals, and extreme statistics provide a 
sound basis for the analysis of these problems. In this paper, we discuss 
a simple analytic method for finding the scaling behavior of the tensile 
fracture stress of disordered networks (section II), and then outline some 
innovative numerical methods for finding the scaling behavior of: the rigid 
backbone in central force systems (section II), and the topology of minimal 
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Figure 1.    The parallel bar model 
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surfaces relevant to the plasticity of random materials and the topology 
of fracture surfaces (section III). The latter sections profit from results in 
graph theory and combinatorial optimisation. 

2.   Brittle Fracture of Inhomogeneous Materials 

The effect of length scale on tensile fracture strength1 has been studied 
since the time of Leonardo da Vinci, and is reflected in the large variability 
in fracture strength observed in experiment. Rigorous analytic results are 
only available for very special models2-4, but precise numerical results are 
now available for many systems. Unfortunately the size effect is usually 
logarithmic, so many orders of magnitude are needed to properly test .this 
effect. Most of the simulations in the literature are unreliable in this regard. 
Only the quasi-one-dimensional "fiber-bundle" models can be studied with 
sufficient precision to find asymptotic size effects. The results of these pre- 
cise calculations are consistent with the following simple arguments based 
of a statistical extension of fracture mechanics. 

2.1.  THE MODEL 

Consider a parallel bar (fiber-bundle) model1 as illustrated in Fig. 1. Each 
bar has a strength drawn from a cumulative distribution F(<7&), which. 
Initially all of the bars expreience the applied stress a. However, if a bar 
exceeds its fracture stress, its load is distributed to its neighbours. If a 
surviving bar is surrounded by k failed bars, it experiences a magnified 
stress given by, 

ak = <r(l + k/2) (1) 

For example, the bond marked (x) in Fig. 1 has k = 3. We want to find 
the external stress at which a system with L bars experiences complete 
failure. Initially, weak bars fail randomly, but eventually a dominant crack 
evolves and fracture occurs. If we assume that fracture occurs once the 
stress intensity at the tip of the largest crack exceeds the average strength 
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of a bar, amean, then it is possible to get a simple estimate of the fracture 
stress as follows. 

First find the fraction / of bonds that break at applied stress a assuming 
no stress enhancement effects, 

f = F(a) (2) 

The.typical size of the largest crack, c, at this value of / is given by5, 

fcL ~ 1 (3) 

or, 
c ~ -InL/ln/ (4) 

The stress intensity at the tip of this crack is (from (1)), 

atip = cr(l-lnL/lnf) (5) 

Fracture occurs when atip = crmean, which leads to the implicit equation, 

07(1 - lnL/lnF(af)) = amean (6) 

For example with a Weibull distribution 

F(a) = l-exp(-(a/aor), (?) 

we have, amean = T(l + l/m)cr0, so that writing x = cr0/cr, Eq. () becomes, 

l + ^- = T(l + l/m)x (8) 
minx 

At sufficiently large L, the solution to this equation is approximately 

InL 
x ~ 

mT(l + l/m)' (9) 

which implies that for any m, the size effect is logarithmic. Direct solutions 
to the parallel bar models are presented in Fig. 2. Fig. 2a shows that the 
distribution of failure strengths is not Weibull, while Fig. 2b illustrates that 
asymptotically the size effect is logarithmic, in agreement with Eq. (9). We 
refer to the original papers for the details of how these calculations were 
performed and more complete results6. 

3.   Fractal Geometry of the Stressed Backbone 

An important feature of granular materials is the topology of the stress- 
bearing paths which occur in these materials. Similarly, if a structure is 
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Figure 2. Numerical results for the parallel bar model whose bars have strengths drawn 
from a Weibull distribution (with m = 5) a) The distribution of breaking strengths (with 
L = 1000); b) A test of logarithmic scaling of the average strength (Eq.(9)) for an L x L 
series-parallel model. 

supported primarily by central forces, the geometry of the most weakly 
connected structures which support stress are non-trivial. Unlike the case 
of systems with angle forces, where simple connectivity ensures that stress 
can be transmitted, in systems supported by only central forces higher 
order connectivity is required in order to transmit stress. There has been 
a recent breakthrough in the analysis of stress-bearing backbones in two 
dimensions using ideas based on graph theory7-9. The physical idea is as 
follows. Consider a triangular network in two dimensions. Each node of 
the network has 2 degrees of freedom. Each bond provides one constraint. 
Provided none of the constraints is redundant, for the network to be rigid, 
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Figure 3.   The fractal stress-bearing backbone of a site-diluted random triangular lattice 
of central-force springs. The lattice has N ~ 870,000 nodes 

we need, 
2V - B = 3 (10) 

This "constraint counting" argument was used by Maxwell and more re- 
cently by others to predict what sort of structures are rigid. However only 
recently has the "constraint-counting" method been used as a precise nu- 
merical procedure in 2-d. The key problem is that one must ensure there 
are no "redundant" bonds in the network. That is, bonds which are not nec- 
essary to ensure rigidity of a structure. In two dimension checking Eq.(10) 
on all length scales is sufficient to ensure this, while in three dimensions 
the simple extension of this idea is not exact. Even in two dimensions, 
checking Eq.(10) on all length scales appears prohibitive and at best an 
exponential algorithm in the number of nodes. In fact, by using an analogy 
with the bipartite matching algorithm of graph theory, it is possible to find 
the stress bearing backbone in 0(i\r1-2), where N is the number of nodes 
in the lattice. In Fig. 3, we present the stress bearing backbone of a site- 
diluted triangular lattice found using this method. The fractal dimension 
of the rigid backbone is found from the data of Fig. 4, from which we find 
Df = 1.78 ± 0.02. Also shown in Fig. 4 is the scaling behavior of the num- 
ber of critical bonds in the rigid backbone. If a critical bond is removed, 
stress ceases to be transmitted across the sample. The scaling exponent of 
critical bonds is found to be 0.85 ± 0.05. Many other new results are being 
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Figure 4. The scaling behavior of the number of bonds on the backbone (upper data), 
and the number of critical bonds on the backbone (lower figure). Each point is an average 
of a number of configurations ranging from 100 for the largest lattices to 10000 for the 
smallest lattice 

found with this and other new algorithms for finding the geometry of rigid 
clusters. 

4.   The Topology of Minimal Surfaces 

As a first approximation to finding the topology of slip bands in perfectly 
plastic materials, and to the topology of fracture surfaces, we construct 
minimal surfaces. In two dimensions this problem is "dual" to finding the 
minimum gap in dielectric breakdown, but in three dimensions, the mini- 
mum gap is a path problem, while in fracture, we are interested in a min- 
imum surface. Nevertheless the procedures outlined below can be adapted 
to all of these problems. This work is in a preliminary stage, and has not 
yet been published elsewhere. In the following we ouline the method and 
give some preliminary results. 

Consider a network, for concreteness a square lattice, whose bonds are 
perfectly plastic (see Fig. 5). 

We outline the procedure for the electrical case, so the discussion is 
in terms of flow. We want to find the connected path, transverse to the 
direction of net flow, along which the flow first reaches the plastic limit. 
We call this path the minimum cut, and the external flow at which it 
occurs the yield flow. This problem has been studied intensively in the 
engineering of optimal flow in a variety of transportation, data systems 
and integrated circuit contexts. The connection to perfect plasticity has 
not been made before, and instead prior work on this problem has resorted 
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V 

Figure S.    A perfectly plastic I-V characteristic 

to direct solution of the electrical current flow in the network11,12. The 
latter papers draw the important connections with the topology of many 
other random surfaces problems, such as those occuring in epitaxial growth. 
In fact it has been claimed14 that 2-d fracture surfaces (e.g. paper) have 
the same roughness exponent (2/3) as the KPZ equation, a contention that 
is still a matter of some dispute. 

The identification of the minimum flow in a network with capacities can 
be found using the Ford-Fulkinson algorithm10. This algorithm works by 
finding paths between a source and a sink, and then updating the flow on 
that path. All bonds on a path are updated by the smallest remaining flow 
capacities on the path. The capacities on the path are then updated to take 
into account the updated flow. We find the candidate paths by a breadth 
first search. If we assign integer capacities to the bonds of the network, the 
entire calculation is in integer arithmetic. 

If we randomly assign two integer capacities c\ and c2 to the lattice, it 
is like a composite problem. Clearly the yield flow fy > Cj.. However, the 
topology of the minimal cut is independent of c\, or c2 and is universal. This 
is easily seen if one first injects flow c\ into the system. Since the system 
is linear at this point, that flow and hence the associated capacity can be 
subtracted from the total. What remains is a composite with capacities 0 
and c2-ci. This is a percolation problem. The "interface energy", is in this 
case the same as the maximal flow, and hence 

/y-Ci + Cca-dXp-pc)*«1-1)" (11) 

The topology of the minimal cut is also readily found from work on per- 
colation theory, so that at the percolation point(50/50 mixture for the 2-d 
square lattice), the interface width w is known to be 

w ~ Lc (12) 
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where £ = 1 in two dimensions at the percolation point. It is interesting 
to note that the interface roughness is independent of c\. If the possible 
capacities are varied continuously from the 2 possibilities considered above 
to an infinite number of integer possibilities, then the model reduces to the 
model considered by Roux and Hansen11, and which is related to the KPZ 
equation. In that case, we have the result in 2-d 

w ~ L2'3 (13) 

A more thorough study of these systems is in progress. 
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THE STATISTICS OF FAILURE PROBABILITY 
IN HETEROGENEOUS MATERIALS 
WITH TOUGH-TO-BRITTLE CROSSOVER 

P. L. LEATH AND NIU-NIU CHEN 
Department of Physics and Astronomy 
Rutgers University 
Piscataway, NJ 08855 

We study and review the statistics of fracture due to randomly 
disordered and heterogeneous microstructures. The samples to be 
considered will have a uniform tensile stress applied across them. But, 
unlike most of the samples considered at this conference, these samples 
will have no macroscopic notch cut in them but only the cracks and 
defects due to the disordered microstructufe. We shall review very 
briefly the work of our group on brittle systems[l], dating from almost 
a decade ago, along with our more recent recursion relation method 
for heterogeneous samples [2], and finally present our latest work on 
surface effects and the analytic form of the failure probabilities [3]. 

0006 

a) b) 

Fig.I a) A random lattice configuration with p = 0.90 after rigidity 
failure has occurred, b) The configuration after complete fracture has 
occurred. [Fig. 1 from Ref. 4] 

An example of a brittle system is shown in Fig. 1, from the work 
of Beale and Srolovitz[4]. Here a uniform, uniaxial tensile stress is 
applied from top to bottom along the vertical axis. The sample is 
a triangular lattice occupied randomly by a concentration p = 0.90 
of identical breakable Hookean springs. The disorder is provided by 
the ten percent missing bonds. This system is brittle in the sense that 
there is a weakest link (a randomly occurring worst or largest cluster of 
missing bonds which breaks first due to the stress enhancement at its 
edges. Once broken this weak area is even weaker thereby nucleating 
an unstable crack which cleaves the sample. The failure probability 
distribution FL(a) for such a randomly diluted lattice is the modified- 
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Gumbel or double-exponential distribution[l] given by 

1 - FL(a) = expl-ALexpi-B/a1/")], (1) 

where L is the sample size, a is the applied, external stress, A and 
B are constants (or weak functions of a) and a is an exponent of 
order one which describes the stress enhancement distribution around 
a crack. A failure distribution of this double-exponential form occurs 
whenever the worst defect of size n (in the above case, this is a large 
cluster of n vacant bonds) occurs with an exponentially small proba- 
bility [i.e.- proportional to exp(-an)]. This is the case for all brittle 
systems where the critical crack is nucleated by the coincidence of ran- 
domly located defects. This double-exponential distribution, Eq.(l), 
implies a mean fracture stress (a) which scales logarithmically to zero 
with sample size as (lnL)0 in the thermodynamic limit L —>• oo. 

The statistics of extremes [5] tells us that there are basically only 
two general analytic forms for the failure distribution function if it is 
determined by the weakest link. The first is the double exponential 
form of Eq.(l) which prevails when the weakest link occurs with ex- 
ponentially small probability. The second is the Weibull distribution, 
which is of the form 

1 - FL{a) = acpi-ALai). (2) 

This form prevails when the weakest link occurs with an algebraically 
small probability [i.e.- proportional to n~7]. In this case the mean 
fracture stress (p) scales algebraically to zero as L-1/7 in the thermo- 
dynamic limit L —>• oo. 

There have been many numerical and experimental confirma- 
tions of the modified-Gumbel distribution, Eq.(l), for brittle sys- 
temsfl,4,6,7]. For example, the system studied by Sahimi and 
Arbabi[6] corresponds to a "superelastic" triangular lattice with 90% 
of the bonds occupied by identical breakable Hookean springs and the 
remaining 10% of the bonds occupied by unbreakable springs. The 
result is that a nucleated crack generally is stopped when it hits a 
randomly located unbreakable spring. So the system fills with many 
small cracks which only traverse the sample by a kind of percolation 
process. This percolation process apparently leads to the power law 
correlations and a Weibull failure distribution. A somewhat similar 
behavior occurs for the case of a heterogeneous system with a con- 
tinuous distribution of local breaking strengths, where for sufficiently 
small samples, at low applied stress, the system is tough with almost 
all the cracks (which are caused by the failure of the weaker bonds) 
being stopped or pinned by the stronger bonds. But at higher applied 
stress even the strongest bonds break (assuming an upper cut off in 
the local bond-breaking strength) and the sample becomes brittle. A 
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similar transition from tough to brittle behavior occurs even at low 
applied stress, as the sample size increases, when one reaches a sam- 
ple size such that there is the likelihood of occurrence of a cluster of 
weak bonds so large that the large crack the cluster forms has a suf- 
ficiently large stress enhancement at the crack's edges to break even 
the strongest bonds. 

Fig.2 A two-dimensional sample on a square lattice with only some of 
the vertical bonds broken so that all cracks are one-dimensional. This 
also represents the "chain of bundles" model for fiber composites. 

Specifically our model for heterogeneous systems is to assume that 
each bond has a breaking strength s chosen randomly from a proba- 
bility distribution P(s). For the purpose of this article we shall choose 
the uniform distribution P(s) = 1/w, for 0 < s < w, and otherwise 
P(s) = 0. This is a rather extreme case (a rather better behaved case 
is the local Weibull distribution[2]) but any normalized distribution 
can be used. 

We also assume that all cracks are linear and perpendicular to 
the applied uniaxial stress. This means that only vertical bonds (as 
illustrated in Fig. 2) break. And the model becomes essentially the 
"chain of bundles" model of Harlow and Phoenix[8]. In particular, the 
failure distribution FLxL(a) of an L x L sample is given by 

FLM = 1 - (1 - FL(a)Y (3) 

where FL(a) is the failure probability for a single row of length L. 
The problem is then reduced to the one-dimensional one for FL(a). 

Finally, following Harlow and Phoenix[8], we assume strictly local- 
load sharing, where the local stress applied to an intact bond, when 
an external stress a has been applied, is given by 

am = (1 + m/2) a, (4) 
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where m is the total number of broken bonds on either side of the 
bond. For example, in Fig. 3, the x marks a bond with m = 3 (Since 
this bond has broken bonds on both sides, it is one we shall call a lone 
bond). 

n 
Fig. 3 A row of the sample after some bonds have broken.   The lone 
fiber, marked with an x , has a load corresponding to m = 3. 

But FL{O) for a single row can be enumerated exactly since 
FL(O~) = 1 — SL((T) , where SL(CT) is the survival probability of the 
row, and since SL{O) is the sum over the 2L — 1 possible survival 
configuration probabilities for L bonds. For example, in Table I we 
show the elements of SL(a) for L = 1, 2, and 3, where Wm(a) is the 
probability that a bond survives under local stress am given by Eq. (4) 
above. 

Configuration (degeneracy) Survival Probability 
1 Wo 
11,10(2) W?,2WiFi 
111,110(2),101,100(2),010 W0

3,2W0W1FU W^W^WjFt, F1W2F1 

Table I. Survival configurations and their survival probabilities. 

In reference 2, we derived an exact recursion relation for FL(G) of 
the general form 

FL{a) = F[F1(a),F2(a), ... ^^(a)} (5) 

This recursion relation is sufficiently simple to easily allow our exact 
calculation of FL{O) up to L = 5000. With the enumeration of the 
exact recursion relational, we find a deep minimum in FL(a), at low 
a, at an optimum sample size, as is shown in Fig. 4. To the left 
of the minimum the sample is tough, and is filled with cracks which 
formed at the weaker bonds broke, but which stopped upon meeting 
stronger bonds. With local-load sharing, the probability that an m- 
bond survives is given by Wm(a) = 1 - (1 + m/2)a/w, and thus goes 
to zero atm = 2w/a — 2. Thus, whenever a crack of this critical size, 
or greater, appears no bond can stop it and the sample cleaves. For 
samples of size L < 2w/a — 2 no such cluster can appear, while for 
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larger samples there is an increasing probability of the occurrence of 
such large cracks. So the optimum sample size is at L ~ 2w/a and 
above this size there is a crossover to brittle behavior. Of course, for 
large applied stress a, all samples are brittle. _ 

From the differential equation, we have shown that FL{a) is ot the 
general form 

FL{a) ~ ( 
aw) 

bL 

(6) 

where a and b are, approximately, of the form a ~ 5 - 11a/w and 
b ~ 0.5+0.4 exp[-25a/w]. The minimum fracture probability occours 
at 

(aw\ 

with a value 

FLmM ~ exp(-6Lmin) 

(7) 

(8) 

Lattice size (L) 

Fig.4 A log-log plot of FL(a) vs. L, for a/w = 0.2 (top curve), 0.1 
(middle), and 0.05   (bottom), evaluated numerically from the exact 
recursion relation, Eq.5. [Fig.2a from Ref. la] 
For samples smaller in size than Lmin the sample fills with small cracks 
and failure occurs only in those samples when these cracks merge 
together and percolate across the sample. Survival of a tough sample 
then depends upon the existence of strong bonds or pins to stop the 
growing cracks. For samples larger than Lmin, failure occurs when a 
crack can grow to a size Lmin which then is necessarily unstable and 
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cleaves the sample. Failure of these brittle samples depends upon the 
weakest link which nucleates a critical crack. 

0.00 

■5.00 

^•10 00 
c 
Ä-I5.00   - 
Li. 
-i. -:o.oo - >—^ c 
T -25.00 

~ -.10.00   - 

-.1500   - 

40.00 
0.00 

b) 

5,00 10.00 15.00 20.00 2500 

W/stress 

Fig.5 a) Weibull plots of ln[-ln(l - FL(a))]/L vs. \n(a/w). The 
curves (two slightly different approximations) for L = 15 are straight 
(Weibull-like) at low ojw, on the left follow a universal curve over 
the a/w range shown on this graph, b) Modified-Gumbel (double- 
exponential) plots o/ln[—ln(l—FL(a) )]/L vs. w/a. The dotted curve, 
for L = 150, is nearly straight (double-exponential-like), and the solid 
line, for L = 15, is curved but approaches the same universal straight 
line at large stress (small w/a). [Fig.3 from Ref.lb] 

We have studied the statistics of failure in each region by Weibull 
plots (Fig. 5a) and modified-Gumbel plots (Fig. 5b) of FAo) versus 
stress. In Fig. 5a it is shown that, at low applied stress and for small 
samples below I*min(cr), there is a straight line Weibull plot with a 
slope that is proportional to sample size (as would be expected from 
our analytic formula). And for larger samples and/or higher applied 
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stress, there is a roughly straight line on the modified-Gumbel plot 
(Fig. 5a). This Weibull behavior in the tough region is consistent with 
the results of Sahimi and Arbabi[6l for the breakable/superelastic sam- 
ple. And the modified-Gumbel behavior in the brittle region is consis- 
tent with the weak-link behavior in other brittle systems. Neverthe- 
less, the mean fracture stress goes to zero logarithmically as L -» oo 
(see Fig. 6) since the mean fracture stress is almost always sampling 
the brittle region. This is because the tough region is always at applied 
stresses well below the mean breaking stress. 

16 00 

Fig. 6 The inverse average fracture stress {a) * 
logarithmic size scaling. [Fig. 6b from Ref. lb] 

vs. L , as a test of 

.=  I» r 

_3 

•   •   ••••♦, 

Lattice size (L) 

Fig.7 The failure probability FL{i) ofLxL fuse networks on a square 
lattice, with a uniform distribution of fuse strength, from numerical 
simulations with 5000 realizations at each value of L, and for i/w = 
0.2 (top curve), 0.1 (middle), and 0.05 (bottom). [Fig.2b from Ref.la] 
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We have also done numerical simulations on two-dimensional het- 
erogeneous fuse networks. The results are shown in Fig. 7, and are 
generally consistent with the chain-of-bundles model above, except 
that we did not succeed numerically in traversing the minimum in 
FL{I) at low applied current i. First, the statistics are very difficult 
to handle numerically when Fi < 10~4 since thousands of configura- 
tions must be studied to find one that fails. Secondly, the minimum 
seems shallow compared with the results in Fig. 4. It turns out that 
this latter effect is due to surface cracks on the sample, which we shall 
now discuss. 

A particularly convenient method of studying the effects surface 
disorder on fracture properties in the linear crack approximation is the 
stochastic transfer matrix (STM) method which we have developed by 
generalizing the approach of Duxbury and Leath[9] to the present case. 
This approach will be described in detail in a separate publication, and 
we shall only present the numerical results here. 

T              -l                            T 
1 •  •           1   •           • •           »1 
1                            1                                                  _L 

a) 

• •      •    • •    • 

• • • 
— =.s \ 

I 

b) 

c) 

Fig. 8 Illustrations of a partially broken row in the interior (a) of a 
larger sample, with periodic boundary conditions (b), and with open 
boundary conditions (c). The vertical lines represent intact bonds, 
and the dots represent broken bonds. 

We consider three types of boundary conditions for a row or bundle, 
in the chain-of-bundles model with local load sharing as are illustrated 
in Fig. 8. First, interior boundary conditions (Fig. 8a) assume that 
the load of the cracks, if any, on the end of the sample or segment are 
shared with an intact bond on each end. This is true if the segment is 
part of the interior of a larger sample and corresponds to the Fn(a) 
of the recursion relation of Eq. (5). Second, we consider periodic 
boundary conditions (Fig. 8b) where the cracks on each end are parts 
of the same crack. And, finally, open boundary conditions (Fig. 8c) 
are where the cracks on each end are open and the entire load on the 
crack must be borne by the intact bounds closest to the surface. 
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The results of our calculations, when configurations with lone 
bonds are ignored, are shown in Fig. 9, where Fi(a) versus L is 
given in log-log plots for each form of boundary condition at the ends 
of the sample, for a/w = 0.07. Clearly, the strongest samples and 
the ones with the deepest minima in Fi(a) at Lmin are those with 
interior boundary conditions (since there is an intact bond on each 
end to make the end cracks just like interior cracks). And the weakest 
samples, with the shallowest minima are those that are open on each 
end. Also, the reason for the shallow minimum in our numerical sim- 
ulations for real two-dimensional samples is now clear, since that was 
done with open boundary conditions. 

Fig.9 The failure probabilities Fi(a) with interior boundary condition 
(lower curve), periodic boundary condition (middle curve), and open 
boundary condition (upper curve), for a/w = 0.07. 

Fig. 10 The ratio F^ (a)/F^ (a) vs. L, which is a measure of the 
fraction of critical fractures which are nucleated on the interior of a 
sample with open boundaries. 
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In order to quantify the effect of surfaces we compare F£> (a) for 
periodic boundary conditions, which has no surfaces, with Fi'(a) for 
the open boundary conditions.  In Fig.  10, we plot F^ (a) / F£o) (a) 
which is a measure of the fraction of failures in an open system which 
occur on the interior (since FJ?\a) has only interior cracks). At the 
minima F^\ (a/w = 0.05), only about two failures in 1000 originate 
at defects irTthe interior. The message is clear, the surface cannot be 
ignored in calculations of failure probability, since so many of the fatal 
cracks start at surface defects. 

In conclusion, we have found that a rather simple failure model of 
linear cracks in a two-dimensional sample with local load sharing is 
sufficient to produce many of the features which are seen in real het- 
erogeneous systems. The tough-to-brittle transition is characterized 
by an optimum sample size, which varies inversely with the applied 
stress. The tough region is characterized by Weibull statistics and a 
kind of percolation of cracks in those samples that fail, while the brit- 
tle region is a weak-link system characterized by modified-Gumbel 
statistics and a critical crack which cleaves the system. The effects of 
open surfaces are profound, even without modification of the surface 
bonds, and over a wide range of sample sizes, the failure probability 
minimum is much more shallow for the case of open boundary condi- 
tions and the preponderance of fatal cracks originate on the surfaces. 
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1.   Introduction 

Fracture phenomena in disordered materials have attracted a lot of interest 
due to their intrinsic technological importance [1]. Examples of such materi- 
als are certain polymers, fiber reinforced materials, and fibrous compounds 
like paper. Typically, their mechanical response shows such behaviour as 
plasticity and a time-dependent phenomenon like viscoelasticity. From the 
physics point of view fracture of disordered materials involves a variety of 
processes occurring on a wide range of length and time scales. We have 
studied these processes with simplified models, that are capable of showing 
some salient features of materials under external loading. In these mod- 
els we have included plasticity and viscoelasticity, which often have been 
omitted. 

In order to describe elastic-plastic behaviour and fracture in disordered 
materials under tensile elongation we have devised a quasistatic model that 
captures the essence of the continuum approach. A finite size analysis of the 
maximum strain in the stress-strain curves shows significant residue values 
even for large system sizes and for large disorder. We also show how our 
model is capable of describing the behaviour of strain localization in case 
of a disordered fibrous compound, e.g. paper. 

In contrast to quasistatic models, we have also devised a network model 
for describing viscoelastic behaviour and dynamic fracture in the presence 
of disorder and under constant strain rate loading. In this model elastic 
interactions are described with the Born Hamiltonian, and the local relax- 
ation of force field is introduced as Maxwell type viscoelasticity. Thus we 
are able to study fracture dynamics and its dependence on disorder and 
relative time scales of relaxation and loading. Brittle behaviour is encöun- 
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tered in the adiabatic limit of slow straining. However, for finite strain rates 
and with increasing relaxation the development of damage shows ductile 
behaviour. 

Figure 1.    a) Quasistatic model and b) dynamic model. 

yi    y2 

ys    y4 
(A)       (B)       (C) 

b) 

u c 

A 
<—ii—if—ii 

«I—ii—U II 

«I—II—II—II 

de/dt 

} 

2.   Quasistatic Model 

In this section we present a quasistatic approach to model elastic-plastic be- 
haviour of disordered planar materials under tensile elongation. The model 
describes mesoscopic disorder by a 2-dimensional lattice of adjoined initially 
square cells whose microstructure is averaged out locally. Disorder occurs as 
coarse-grained density variation, which modulates the local elastic moduli. 
The cell corners (nodes of the lattice) are allowed to move only parallel to 
the direction of external strain. Uniaxial displacements of cell corners lead 
to three basic deformations (see Fig. 1(a)); all other deformations are linear 
combinations of these three. The deformation of each cell, in response to 
a given external elongation, is determined by minimizing the total elastic 
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energy of the system: 

H = £ aijPiJ {     A     (+2/1 + 2/2 - 2/3 - 2/4 - TT^. )2 

+   5   (-yi + 2/2 + Vz ~ 2/4 + TTBiij - 7rB2ij. )2 

+     C     (+Vl - V2 + 2/3 - 2/4 - TTCly + 7TC2y )2 } (1) 

Here the variables 2/1,2/2, 2/3 and 2/4 are the longitudinal displacements of 
nodes defining the cell ij (cf. Fig. 1(a) for the labeling). The quantity pij is 
the local density and otij denotes the integrity of the cell ij: a^ = 1 for an 
intact cell and o^ = 0 for a completely failed cell. The prefactors A, B and 
C depend on the Young's modulus E and shear modulus G as A = \E, 
B = ^(E + G) and C = |G, respectively. Since the nodes are free to move 
only in the direction of loading, longitudinal and shear deformations are 
allowed but transverse contraction is not. 

If one of the deformation components exceeds a set limit, then the cell 
either fails or becomes plastic — depending on the choice of parameters. 
The possible plastic elongations for each cell are determined as follows: 

*%;  = ™<lx(*A~1Ayi + y2-y3-y4-2QA)) 

tfjjiy = ™**(*irii>(!/i-i/3-0B)) 

*B2y = rnax(ir^.,(y2-y4-0B)) 

Kciij = roo&frcij > (2/1 ~ 2/4 - 9C)) 

^C2tj = rnax{-Kk
c-2\,{y2-yz-0c)) (2) 

where 8A, OB and 6c are the yield thresholds for the three deformation 
modes. In this ideally elastic-plastic model it is simple to introduce the 
failure mechanism by defining the failure limit 6fr of a cell as a certain 
amount of plastic deformation. If the failure threshold is set equal to the 
yield limit, the model describes failure in an elastic material. 

Thus this model is defined by the following four factors: 1) specimen 
geometry (in units of the number of cells), 2) the statistical distribution 
of local moduli, 3) the ratio G/E, between the shear modulus G and the 
Young's modulus E, and 4) the ratio 6fr/0Pi between the critical strain for 
rupture and the plastic yielding. The values specified for Young's modulus 
and yield strain merely set the scale of stress and strain. The ratios G/E 
and 9fr/9pi are material parameters of the model, that are taken to be 
constants. 
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2.1.  FINITE SIZE SCALING OF ELASTIC FRACTURE 

As a first application of this quasistatic model we study the scaling behavior 
of elastic fracture in a disordered system [2]. For this purpose we varied the 
linear system size L over two orders of magnitude up to L = 400. In the 
transverse direction we used either free or periodic boundary conditions, 
but saw no significant effect on the finite size scaling. From the stress- 
strain curves we found that the decay of maximum or fracture stress Of as 
a function of L seems to slow down significantly and even stop for large 
values of L. This tempted us to try a non-linear least-square fit of the form 
erf ~ a + bLc. Of the fitting parameters (a, b and c) a could be interpreted 
as the remaining fracture stress in the limit of infinite system size (should 
it be non-zero) and c as the effective scaling exponent. 

Figure 2.    Finite size scaling of fracture stress. 

100 

SYSTEM SIZE L 

As seen in Fig. 2 the fitting, with the exponent c ss -0.94, is accurate 
over two orders of magnitude in L. The non-zero limiting value (<T/ -» 0.037 
when L -> oo and G/E = 0.25, E = 1, 0/r = 0.2 and d = 2) indicated 
by this power-law-fit is consistent with our previous work [3], in which 
a/ -> 0 only when the "shear" coupling between cells was zero. However, 
for percolation systems it has been suggested [4, 5], that the fracture stress 
a/ should vanish logarithmically as af ~ l/(a + b(lnL)c), with 1/2 < c < 1 
in two dimensions. An attempt to do this kind of fit by demanding c > 0 
and omitting data points for L < 20, is shown in Fig. 2 by the dashed 
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line. Although this fit falls within the error-bars, it is not as good as the 
power-law fit. It is noted, however, that our present model differs from the 
percolation model in that the probability of a cell to have zero density is 
extremely small (in fact of zero measure) while in the percolation case it 
is not. In addition, due to its continuum mechanical nature, our model 
has greater tendency to distribute stress to the wider neighbourhood of a 
cell than bond models do. Whether these differences are sufficient to cause 
different scaling behaviour is beyond the studied system sizes. Nevertheless, 
since our model of mesoscopic or macroscopic cells corresponds to realistic 
system sizes the large residue failure stress is a novel finding. 

2.2.  CASE STUDY: LOCAL STRAINS IN PAPER 

As another application of our model we study the strain localization in 
disordered fibrous compounds. Paper is a good example of such a material, 
since its fibrous nature can be controlled during the manufacturing process. 
Typically this process begins with colloidal suspension of fibers. In the 
suspension phase, fibers may cling together to form larger fiber clusters 
or 'floes'. As the fiber suspension is later deposited on a surface and the 
fluid is drained out, the spatial distribution of local density is seen to be 
'flocculated'. 

We have modelled the effect of flocculation on the local strain distri- 
bution [6, 7]. Pronounced flocculation in the transverse direction against 
external load was found to be most critical, i.e. it led to large variation in 
local strains for a given variation in the local elastic moduli. We have also 
shown that the strain distribution remains essentially the same throughout 
the elastic regime. As a natural continuation, one might ask what hap- 
pens to the strain distribution when the external elongation is increased 
beyond the yield point and the system starts to undergo large plastic de- 
formations. It seems obvious that as external elongation increases the cells 
with the highest strain will yield and eventually fail. In the case of highly 
yielding material, the coefficient of variation of local strains is first seen to 
be constant, but starts to grow as the specimen is loaded beyond the yield 
point. 

The reason for this can be seen both in simulations and experiments, 
in which local strains concentrate on narrow plastic bands or strain lines 
(cf. Fig. 3). When a small area of paper starts to yield plastically, it becomes 
very difficult to further increase the local stress of the neigbouring cells in 
the longitudinal direction. This means that plastic yielding in paper takes 
place only in a small fraction of the specimen area. In both simulations and 
experiments the site of eventual failure can often be visually located long 
before the failure actually occurs, i.e. the plastic strain lines can be viewed 
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as precursors for fracture. 

Figure 3. Distribution of plastic strain in a simulation (a), and in an experiment (b). 
The light areas in (a) indicate plastic strains, and in (b) the location of plastic debonding 
of fibers [6]. 

a) b) 

3.   Dynamical Model 

In this section we present a 2-dimensional dynamical model of fracture and 
analyze the interplay between disorder and force relaxation. Each site in 
an L x L lattice (initially a square lattice) is assigned a unit mass, which 
is connected to nearest neighbour mass sites by bonds, as in quasistatic 
lattice models for fracture [8]. The bottom-most row of masses is always 
kept fixed while the top-most row of masses is moved in unison with a 
constant rate to introduce loading as tensile elongation in the y-direction. 
In the x-direction we apply periodic boundary conditions (see Fig. 1(b)). 

The elastic interaction strength of a bond ij is described by the Born 
Hamiltonian [9, 10] 

Hij = £((* - uj) ■ dj|)2 + §((* - UJ) ■ d±)2, (3) 

in which a and ß are elastic tensile and bending coefficients of a bond, 
respectively, Uj is the displacement vector of site j, and d||j± is the unit 
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vector either parallel or perpendicular to the vector connecting neighbour- 
ing sites in the undeformed lattice. For the purpose of describing the local 
adjustment of the material structure to the stress we introduce a Maxwell 
type relaxation or dissipation mechanism to the forces acting on mass sites 
[10]. Now the constitutive equation for the forces reads as follows 

dU dfn     1, 
dt        dt      r   J' 

y (4) 

in which fa is the dynamic interaction force between nearest neighbour 
sites i and j, fn is the elastic force derived from the Born Hamiltonian and 
T is a phenomenological force relaxation constant. Then r and the elastic 
interactions (a and ß) set the internal time scales of the system. Our choice 
of local dynamics is equivalent to a Born spring with tensile and bending 
stiffness in series with a viscous dashpot, as depicted in Fig. 1(b). In this 
model disorder is introduced by randomly removing a fraction q = (1 — p) 
of the bonds, i.e. quenched disorder (see Ref. [8]). 

Figure 4- Time-development of the number of cut bonds Nc averaged over several 
simulation runs and for strain rate de/dt = 2.5xl0~4. The end-points of the curves 
indicate the final fracture. 
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3.1.  DISORDERED SYSTEM 

In disordered systems the fracture behaviour is expected to depend on the 
amount of disorder and on the interplay between the strain rate (de/dt) and 
internal time scales, especially the force relaxation constant (r). At a finite 
strain rate, different regimes are observed in the fracture process, which 
can be illustrated by the increase in damage during tensile elongation, see 
Fig. 4. This figure shows the time-development of the number of cut bonds, 
when the force relaxation is varied. Fracture in a system with negligible 
relaxation (large r) is clearly affected by the loading procedure. An abrupt 
application of constant strain rate at t = 0 introduces a propagating shock 
wave into a system, which decays slowly in a system with weak relaxation 
(r = 100). When travelling back and forth, the propagating shock wave 
may break individual bonds here and there in an uncorrelated manner. 
Due to the lack of relaxation, and hence, to the increased stress enhance- 
ment, these microruptures, interacting with the pre-existing disorder, soon 
start to correlate. As soon as one of the cracks begins to dominate, the 
system suffers rapidly a macroscopic breakdown. At finite strain rates with 
very small relaxation, there may exist competing microcracks, which have 
nucleated from several defects — not only from the most critical one [4], 
as in models of brittle fracture. The microcracks exhibit correlated growth 
and can eventually coalesce. 

When r = 1 the strong relaxation damps effectively all the disturbances 
in the system, and the initial loading-rinduced shock wave has no effect on 
the fracture behaviour. The cracks start to propagate very slowly from ini- 
tial defects, if at all, because the stress enhancement at the crack tip is 
strongly reduced compared with systems of weak or moderate relaxation. 
Since in this case there is practically no potential energy stored in the bonds, 
an individual rupture does not necessarily cause the next bond-rupture to 
take place close to the current one. The interactions between neighboring 
mass sites diminish and the local dynamics becomes increasingly indepen- 
dent of the dynamics of the surroundings. The lack of strain-dependent 
and reversible energy makes the sample very ductile. As a result, a system 
with strong relaxation evolves towards the macroscopic breakdown via nu- 
merous microruptures in an uncorrelated fashion. The system is capable 
of withstanding a considerable amount of external strain, unlike systems 
with weak relaxation. Eventually, this drives the system to a drastically 
deformed final configuration. In real materials this behaviour can be inter- 
preted as permanent plastic deformation, which in our model is captured 
by the non-recoverable response of the dashpot elements. 

When the force relaxation is weakened towards a moderate value of 
r ~ 5 - 10, features of systems with both weak and strong relaxation are 
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captured. As Fig. 4 shows, in weakly disordered systems of p = 0.8—0.9, the 
proportion of ruptured bonds grows rapidly in the beginning of the fracture 
history. Then the accumulation of damage becomes slower, and the system 
is able to accommodate additional straining. However, in strongly disor- 
dered systems this tendency is lost. Judging from the width of the fracture 
regime in strain or strain to final fracture (in Fig. 4), the system shows an 
increased ductility for strong relaxation. In addition, for weak relaxation 
a strongly disordered system is able to accommodate more external strain 
than a weakly disordered one (see the insert of Fig. 4). For increasing re- 
laxation, this is reversed: a weakly disordered system withstands straining 
most. 

4.   Summary 

Here we have demonstrated how computer modelling gives interesting qual- 
itative information on fracture in disordered materials. First we developed 
a mesoscopic elastic-plastic model to study two-dimensional systems under 
adiabatic loading conditions. In the case of an elastic system the finite size 
analysis of the maximum strain showed a significant residual value for large 
system sizes and large disorder. Another demonstration of the versatility 
of this quasistatic model is its capability to show similar strain localization 
as seen experimentally in paper. 

We also developed a dynamical model to study the interplay between 
force relaxation and disorder in systems under constant strain rate. In dis- 
ordered systems, the strong relaxation was reflected in the slow crack nu- 
cleation and uncorrelated microruptures, leading to very ductile character- 
istics. A more detailed description of the results from this dynamical model 
will be published elsewhere [11]. 
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1. Introduction 

During the last decades experimental studies have revealed some specific 
nonlinear regularities in the behaviour of microcracks due to the transi- 
tion from the dispersive accumulation of microcracks to the formation of a 
main crack, in the interaction of defects with macrocracks, and in statistical 
self-similarity of defect distribution. These effects are developed as the con- 
sequence of collective behaviour in the defect system and are caused both 
by typical features of the system "solid with defects" and by some universal 
laws of nonlinear system behaviour. In the last case the structure evolution 
is accompanied by various forms of structural (kinetic) transitions that lead 
to the generation of localized modes of deformation and failure, and sharp 
changes of the symmetry properties (topological transitions). 

2. Statistical Model and Constitutive Equations 

2.1.  STRUCTURAL PARAMETERS IN SOLIDS WITH MICROCRACKS 

It has been established that deformation and failure of solids are accom- 
panied by multiple nucleation and growth of microcracks. The existence of 
different types of microcracks and diversity of mechanisms of their genera- 
tion and development requires the adequate choice of parameters character- 
izing the microcracks. It should be noted that microcracks, both in ductile 
and brittle materials, are orientated by the stress field and are character- 
ized by the anisotropy of their microgeometry, which is higher for brittle 
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solids (~ 1 : 10) and lower for ductile ones (~1:2) [1]. The material den- 
sity change (Ap/p « 10-4 — 10~3), which accompanies plastic deformation 
and precedes the formation of a macroscopic crack is another significant 
characteristic of the microcrack generation. The parameter, determining 
the volume concentration and the preferential orientation of the microc- 
rack may be represented by the symmetric tensor pik = n (sik), where n is 
the number of microcracks in unit volume. The "microscopic quantity" 

Sik = S ViVk 

corresponds to the density tensor of dislocations modelling the considered 
single defect. Tensor sik characterizes the volume and orientation of the 
disk-shaped microcracks with the base SQ = SQV and vector of the dis- 
placement jump (normal to the base) in transition from one edge to another 
b = bv. The volume of the microcrack is s = Sp Sik- 

2.2.  STATISTICAL MODEL 

Evolution of defects is caused by the statistical distribution of microcrack 
nuclei and interaction between defects. The evolution equation for the mi- 
croscopic parameter s^ is given by the Langevin equation [2] 

s = K(s)-F(t), 

where K(s) and F(t) are deterministic and fluctuating parts of the interac- 
tion forces. Fluctuating forces are characterized as usual by the following 
properties 

(F(t))=0,   (F(t)F(t')) = QS(t-t'), 

where the averaging is taken over the stochastic process; Q is the correlator 
of fluctuating forces. In general, and it is typical in the considered case of 
defect accumulation, fluctuating forces depend on the variable s. But for our 
applications it is more convenient to study statistical properties using the 
Fokker-Planck equation for the distribution function W(s,t). The Fokker- 
Planck equation corresponding to the Langevin equation has the form 

»HT —»(Kcw + i«^, a) 

where the first term is the so-called drifting term and the second is the dif- 
fusion term. The distribution function W{sik,t) describes the probability 
of the state in phase space having coordinates (sik,Sik)- 

In [3] the process of damage accumulation was described assuming 
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the self-similarity of the microcrack distribution at the various damage 
stages. The analysis of experimental data showed that self-similarity of de- 
fect accumulation may be observed in essentially distinguishing conditions 
of material deformation. Following Barenblatt we will assume statistical 
self-similarity of the microcrack distribution. The latter corresponds to the 
spectrum of stationary solutions of the Fokker-Planck equation (1). It is 
quite easy to get the stationary solution for the distribution function W 
(W = 0) if the condition W(s) -4 0 is satisfied for s ->■ ±oo. The stationary 
solution is determined by the expression 

„,     „ i       /    fn
B2K(s')ds'\ W = Z~1exI>i-^ ^ J, 

where Z~x is the normalizing parameter given by the integral / W(s) efe = 
1. 

The self-similarity hypothesis introduces the spatial distributions of 
defect ensembles into consideration when the ratio of the energy E = 
/0

S 2K(s') ds' to the correlator Q is constant. The parameter Q characterizes 
the energy relief of the initial structure ( grain boundary energy, energy of 
dislocation pile-ups) representing the microcrack nuclei. This case is valid 
for quasi-brittle damage which is accompanied by change of the mean size 
of microcracks but not concentration. For the damage accumulation under 
the ductile failure the self-similarity assumption may also be extended if we 
introduce the spectrum of Qi for ensembles of defects of each mesoscopic 
level. Experimental data presented in [3] support this assumption. 

A dislocational microcrack is the possible form of the hollow nucleus 
of a superdislocation with Burgers vector B = nb (n ~ 20 — 30 is the num- 
ber of unit dislocations with the Burgers vector b). The microcrack energy 
may be represented as 

„     ßB2L,   R     „ 
*-e*rlBir+*'- (2) 

Here L is the length of dislocations modelling the microcrack, h is the width 
of the microcrack, Esf = 2jsfhL, (7 « fib/An) is the microcrack surface 
energy, R is the size of the overstress zone (so-called the "head" zone where 
the local overstresses decrease as a\ ~ r~K,K > 1/2). 

The microcrack growth is continued until the "head" energy does not 
relax. The equilibrium size of microcrack he = l/2n26 is estimated from (2) 
and for n = 20, h « 0.1/j.m. A close range of sizes is observed experimentally 
[4]. In studying the microcrack growth in the field of external stresses we 
drop in (2) the surface energy part and rewrite the energy expression in 
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the form 

B=£(£)2(ÄL)2il4 (3> 
As it is obvious the expression B/hL is the scalar magnitude of the dislo- 
cation density. 

Thus, the self-similarity allows the average dimensions of defects and 
their energy characteristics and their correspondence to the applied load- 
ing to be introduced into consideration.. The energy of microcracks may 
be calculated in accordance with the energy expression (3). We will con- 
sider the microcrack growth under the external loading and separate the 
contributions from the energy of the dislocation set modelling microcracks 
(tensor sik plays the part of the dislocation density) and that of interac- 
tion between the microscopic gauge field sik, adjacent defects and external 
stress field [5] 

E = E0 - Hik sik + asfk, 

where E0 is the term depending on pik; Hik = jcrik + \pik is the effective 
(mean) force field, acting on the microcrack, aik is the macroscopic stress 
tensor; a, A and 7 are the material parameters. 

Parameter a characterizes the susceptibility of the material to the 
defect generation. Low values of a allow the development of larger mi- 
crodefects. The form of Hik reflects the fact that reconstructions of the 
material structure are determined by the local stresses, which may differ 
considerably from the macroscopic ones. The term Xpik describes the force 
action, which causes defect growth in the fields of overstresses from the 
adjacent defects. 

It is to be noted that the solid with defects is a non-linear system 
which is far from equilibrium and pik plays the part of the order param- 
eter. Some analogies in the behaviour of such systems are discussed in 
[6] and the distribution function for the order parameter was taken as 
W - Z~-lexp(-E/Q), where Q is the fluctuating force intensity deter- 
mined above which characterizes the potential relief of the initial defect 
structure. Averaging sik with the distribution function W, we obtain the 
self-consistency equation for pik 

pik = n I sikZ-1exp(-E/Q)dsd3u, (4) 

where Z = J exp (-E/Q)ds d?v. Equation (4) is a constitutive equation for 
the medium with microcracks for the case of the quasi-brittle behaviour 
of solids, when there occurs preferential growth of the mean size of defects 
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at constant number of the latter n [7]. The analysis of (4) for the case of 
uni-axial extension has shown that depending on the value of the dimen- 
sionless parameter <5 = 2a jXn there are three responses of material to the 
defect growth (Fig.l): monotonic (6 > 6*), metastable (5C < 6 < J*) and 
unstable («5 < Sc); Sc and ö* being the bifurcation points corresponding to 
the change of asymptotes. The value of 6 is determined by the natural scale 
of structural heterogeneity (grain or block sizes) and the correlation radius 
of the overstress field from microcracks. In the case of a monotonic reaction 
6 > <5*, which is characteristic of fine-grained materials, the applied stress 
corresponds to the constant value of the microcrack concentration. These 
values of the p^ provide the minimum of free energy of the material with 
characteristic initial structure under applied stresses. 

In the case of metastable reaction (Sc < 8 < ö*) the change of pn- 
is jump-like in the metastable region and is accompanied by the ordering 
of the defect system (the orientational transition). The unstable reaction 
(6 < Sc) is characteristic of coarse-grained materials, which initially contain 
large nuclei of microcracks. The stress scale in this case is divided into two 
regions: the metastability region (a < Of) with infinite value of change of 
Pik at the existence of structural disturbances and the region of absolute 
instability (a > oy) which allows the existence of arbitrarily large defects. 
The energy of material with defects may be represented taking into con- 
sideration a qualitative analogy between microcrack development in the 
metastable range and phase transition of the first kind. Free energy F can 
be expressed in terms of fourth order expansion in pik by analogy with 
Landau expression 

F = 1/2Apl + 1/ZBpi + 1/4Cj& - DaikPik. (5) 

3.   Some Non-Linear Aspects of Transition to Fracture 

3.1.  KINETICS OF DAMAGE ACCUMULATION 

Kinetics of the damage accumulation was studied in [8, 7] and based on 
the assumption that free energy $ of materials with the considered type 
of defects is determined by the statistical model and depends on the pa- 
rameter pik and elasticity tensor u^. When analyzing nonlinear regularities 
of the microcrack accumulation, especially, damage localization, it is very 
important to take into consideration the spatial non-homogeneity of the de- 
fect distribution. The non-locality effect appears due to the high gradient 
of internal stresses caused by the non-homogeneous defect distribution at 
the mesoscopic level [9]. These gradients are determined by the scales from 
l/j,m to 1cm and more. 

Non-local potential is written in the form \l>* = ty+(l/2)x(dpik/dxi)2, 
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where the quadratic gradient term describes the non-local effect in the so- 
called long-wave approximation, x is tne nonlocality parameter. To follow 
the Ginsburg-Landau approach [2] we obtain as the consequence of the 
evolution inequality <5*/<ft = (S^/5pik) (dpik/dt) < 0 (6^/Spik is the vari- 
ational derivative) the kinetic equation for the Pik tensor 

fto* = _li^L + A(x^), (6) 
dt Tpdpik      dxi     dxi 

where rp is the relaxation time for pik. This equation coupled with the 
constitutive equation of an elastic medium with microcracks [5], initial and 
boundary conditions closes the system of equations defining the continuum 
problem of the quasi-brittle failure. Since the transition from the dispersive 
microcrack accumulation to the damage localization is described by the 
set of curves with <5 < Sc we will examine in more detail the nonlinear 
behaviour of system in this regime. Let us consider specific features of 
the non-linear behaviour of the system due to the transition through the 
instability threshold pf. In some neighbourhood of this point (p > pf) the 
kinetics is determined mainly by the higher terms of the expansion (5) and 
the kinetic equation is presented in the form: 

Here for simplicity the scalar parameter p = Sppik is introduced, for ana- 
lyzing the cross section of a uni-axially loaded specimen. S, a, ß and xo are 
the parameters of expansions assuming the dependence of the non-locality 
parameter g on p. Two main properties of the solution of (7) were clarified 
in [10]. At the developed kinetic stage the p-growth occurs in the so-called 
"peak-regime". It means that p grows infinitely as t -> TC and is localized 
in some area. The spatial distribution of p has self-similar profiles at the 
developed stage of p-kinetics and does not depend on the initial distur- 
bances. Maintenance of the profiles allows us to assume the existence of 
the self-similar solution in the form 

P(x,t) = g(t)f(C),   C=xM<), (g) 

where g(t) governs the growth law of parameter p and 4>{t) defines the 
variations of the half-width of the localization region. For the function 
f (C) determining the localized profile (dissipative structure) we have a non- 
linear boundary problem. It follows from (8) that the time dependence of 
p remains self-similar: this is simply an extension along the x and p-axes. 
Substitution of (8) into the equation (7) allows clarification of the form of 
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the functions g(t) and <p(t) 

t        ,,,     ,x t   O.5(a-0-l)/(a-l) 
g(t) = G1(l-i-)-1/(°-1),   *(t) = G2(l-f) 

'c »c 

where rc is "peak time" (p -> oo at t ->■ TC [10]); Gi > 0, G2 > 0 are the 
parameters of nonlinearity, which characterize the rate of the free energy 
release d^/dp with the increase of the microcrack density in the region 
p > Pf (S < Sc) and the law of the half-width change. The similarity 
transformation allows to find the profiles f (£) for other TC. The spectrum of 
the eigen-functions determines inherent properties of non-linear media. Its 
solution gives the spectrum of eigenforms fj(C) "living" during T1

C time in 
discrete ranges of eigenvalues Q, specifying the damage localization scales. 
The solution (8) refers to the class of nonlinear singular solutions, describing 
an infinite growth of p(i) over localization scale & (fundamental lengths 
[10]) as t -> Tc

; 1 
'c • 

3.2.  TOPOLOGICAL ASPECTS OF TRANSITION TO FRACTURE IN 
QUASI-BRITTLE MATERIALS 

The nonlinear character of the microcrack interaction, followed by the in- 
stability and spatial localization leads to stochasticity which is typical for 
the behaviour of an essentially nonequilibrium system. The instability in- 
volving localization is known to be fractal in nature [11]. Attempts at crack 
modelling based on fractal sets are proposed in [12, 13, 14]. The common 
features of these approaches are the usage of geometrical images of fractal 
sets, for example the Koch curves. But here we will consider the fractal as- 
pect of failure by studying the nonlinear property of ensembles of defects. 
We connect the fractal set with the "limit set" of the localized scales of the 
self-similar solution in some area of the phase space of the system behaviour 
(the attractor area [11]). Stochastic behaviour of the microcrack system is 
observed after the instability threshold pf. Small variation of the initial 
data near this value leads to qualitative changes of topological properties 
and various scenaria of damage localization follow due to the localized insta- 
bility on the set of spatial scales Q with the different peak times rf. Such 
qualitative regeneration of the dynamic system "solid with microcracks" 
due to the localized growth of the microcrack density on the limit set of 
the spatial scales Q is accompanied by the qualitative change of topological 
properties of this system. Topological properties may be characterized by 
the fractal dimension 

In N(r) 
dH = ^MIÄÖ' 

where r is characteristic dimension of cubes, filling the phase volume, N(r) 
is the number of cubes, enclosing at least one element of the system. The 
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dimension du introduced in this way allows differentiation of the extent of 
complexity and intricacy of trajectories of the system in phase space and 
represents the scale invariance of the considered system. 

The topological regularities of transition from damage to fracture 
were examined in [15, 16] for strength estimation of carbon-carbon com- 
posites. Fracture of a carbon-carbon composite reveals two main aspects of 
the quasi-brittle fracture problem: the presence of the dispersive microcrack 
accumulation and the well-defined statistical character of fracture. The de- 
veloped approach was used to simulate the failure in carbon-carbon plane 
specimens with initial macroscopic defect located in the center (the macro- 
crack edges are normal to the extension direction) with chararacteristic size 
Na (N is number of the finite elements in the bulk of the composite plate). 
Simulation of damage has demonstrated that under loading the initial stage 
is accompanied by preferential failure of elements located in the vicinity of 
the macroscopic defect. The percolation cluster across the specimen results 
from coalescence of the cluster originated from the initial macrodefect and 
clusters in its immediate neighbourhood. The cluster appears to be fractal 
in character and with increase of linear dimension L of the damaged array 
its mass M (the number of failed elements) increases on the average as 

M(L) = A LD, 

where D is the fractal dimension and A is the effective amplitude. The 
mean value of A is obtained by averaging over the manifold of realizations 
of the percolation cluster. Numerical predictions of topological properties 
of the cluster being generated in the vicinity of the initial macrodefect are 
presented in Fig. 2 as the logarithmic dependence of the cluster mass M 
on the side length of the initial "cell" L enclosing the cluster. 

The dependence M(L) is seen to consist of two linear portions, the 
slope of which is determined by the fractal dimension D. The cluster growth 
characterized by the fractal dimension D = 1 occurs predominantly normal 
to the loading direction. The growth of the cluster not associated with the 
initial macrodefect leads to the increased value of the fractal dimension D, 
which may be as high as 1.4 - 1.7. This is indicative of qualitative changes 
in the topology of the damage accumulation process and the fracture mech- 
anism replacement. 

The measure of fractal dimension D = 1 supports the validity of the 
approaches of linear fracture mechanics only at the initial stage of crack 
evolution, when the crack propagation is defined by disturbance of the 
stress fields in the vicinity of the crack. However, this holds true for suffi- 
ciently large cracks when the extension of the disturbed stress region d is 
essentially smaller than crack length I (d/l « 1). In the general case when 
the initial macrocrack size is below some critical value I < lt the process 
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of fracture evolution lacks "the intermediate-asymptotic mode" of crack 
propagation [17]. This is important for understanding of the fact that lin- 
ear fracture mechanics generalizations used as the basis for describing the 
fracture stage can not be valid for each case. The evidence for this is the 
increase of the fractal dimension up to value D > 1, in the presence of the 
initial macrocrack with I > k and I <k- 

Attention must be paid to the essential difference of fractals char- 
acterizing spatial ordering from the sets arising due to the space-time or- 
dering caused by the existence of the attractors considered above (strange 
attractors [11]). In the first case the fractals are determined in a space of 
low dimension and the fractal dimension can be determined from relatively 
small computations. The presented results were obtained from numerous 
realizations (the number attained 120 realizations) since the numerical ana- 
logue of the set of invariant-group solutions (6) is inserted in the space of 
large dimension. 

3.3.  RESONANCE CONDITIONS OF DAMAGE LOCALIZATION 

In this part we will consider some aspects of damage evolution under dy- 
namic (impact) loadings which in our opinion corresponds to the resonance 
excitation of damage localization. One of the most interesting failure phe- 
nomena is spall fracture produced by impact loadings [18]. The spall failure 
is characterized by the small times (10~7 —10~6 sec.) and large amplitude of 
tensile stresses, exceeding by several times the quasi-static limit of strength. 
In spite of this peculiarity, spall failure is similar in its structural features 
to the process of quasi-static failure of brittle materials. 

Fracture due to impact wave loading occurs in an essentially differ- 
ent situation relative to the quasi-static loading. Since the physical reason 
for the macrocrack nucleation lies in generating an appropriate profile of 
microcrack concentration, the intensity of impact wave may produce dif- 
ferent resonance-type excitations of the damage localization region. This 
can be observed in the regularities of transition from a single to a multiple 
spall at the increased amplitude of the impact wave. In spalling the failure 
usually spreads over a considerable portion of the material. However, the 
peak regime can develop only within typical (fundamental) lengths with 
a minimum value of fracture time rc. As the load impulse increases, sev- 
eral structures localized on fundamental lengths are generated. In this case 
the appearance of the localized damage zones (dissipative structures) cor- 
responds to the experimentally observed transition from single to multiple 
spalling [8, 19, 20, 21]. 

In reference to the equation (6) the self-similarity of its solution, 
corresponding to the peak regime asymptotes, may occur for a weak de- 
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Figure 1.    Characteristic responses of solid on the microcrack grouth. 
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Figure 2.    Topological characteristics (fractal dimension) of the damage cluster growth. 

pendence of the time of failure on the impulse amplitude - the effect of 
"dynamic branch" under spalling conditions [22, 19]. 

The regularities of the formation of localized dissipative structures 
are specially vivid under shock wave loading with the duration of about 
1 usec. Experiments were carried out on rods (10 - 12 mm in diameter and 
100 -200 mm long) of PMMA and ultraporcelain. A compression pulse was 
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Figure 3. Strength time dependence of(l) polymethyl methacrylate (PMMA) and(2) ul- 
traporcelain (o and A correspond to quasi-static and dynamic branches respectively).The 
inset shows a schematic diagram of the fractured sample [19] 

initiated in the rods by impact from a light-gas cannon. The parameters 
of the compression pulse were measured with a laser differential interfer- 
ometer. From the results of experimental studies of the spall fracture of 
rods, we plotted the logarithm of the fracture time TC versus the amplitude 
of the tensile stress aa (Fig. 3). Also shown in this figure are the results 
of quasi-static experiments. At values TC ~ 10_4s, according to a fracto- 
graphic analysis of the surfaces of the spall sections, the development of 
fracture occurs in the same way as during quasi-static extension. The de- 
pendence log Tc(aa) agrees with the time dependence of the strength of the 
materials which were studied during quasi-static loading. An increase in the 
level of the acting stress leads to a deviation of the logTc(a) curves toward 
a longer fracture time (Fig. 3). At the same time we observed a transition 
from a single-center fracture starting from the surface to a characteristic 
multicenter fracture (multiple mirror zones) in the spall sections. It may 
be suggested that the time dependence found for the brittle solids in the 
region of pulsed extension is related to a transition to a multicenter inter- 
nal fracture and is determined by the nonlinear behaviour in the ensemble 
of microcracks. Fractographic pictures of fracture are of great interest in 
different sections of the spalling (Fig. 4). In the first section (Fig. 4a) where 
the amplitude of loading impulse is maximal many mirror zones are seen 
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Figure 4.    Fractographic pictures of the fracture surfaces in the spall sections of PMMA 
(experiment was kindly given by E.N.Bellendir). 

on the spalling surface. Mirror zones appear to be zones of localized dam- 
age. In the section of spalling the picture is similar but the scale of mirror 
zones increases. In the last spall section only one or two mirror zones are 
formed. The transition from single-center fracture to multicenter fracture 
is observed in the interval of loading times 10~4 - 10_6sec. Resonance exci- 
tation of damage localization is the main factor of the weak dependence of 
the fracture time on the amplitude of the tensile stress ("dynamic branch", 
Fig. 3) under spalling. This result explains the "overloading" effect under 
dynamic fracture. 

Under quasi-static loading the random distribution of initial defects 
produces only simple structures, e.g. there are mirror zones near surfaces of 
specimen. Initiation of the complex structures may be realized by the reso- 
nance excitation. The example of the same structure was observed in some 
spall section (Fig. 4b), where the characteristic slope of the stress wave 
provided for the resonance regime of the complex structure excitation. 
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1. Introduction 

Experiments conducted on both compact tension specimens (by Kobayashi 
et al., 1991) and cracked pipes (by Schmidt et al., 1991) made of ductile 
materials have demonstrated a considerably reduced fracture strength un- 
der cyclic loadings; that is, fracture occurs for a lower overall deformation 
if that deformation is reached under cyclic conditions than if it is reached 
monotonically. The experiments of Schmidt et al. (1991) also seem to in- 
dicate that the effect is connected in some way to strain hardening: indeed 
it is more marked for stainless steels, which exhibit considerable hardening, 
than for low-alloy steels, which have lower hardening slopes. 

It was quickly concluded by Gilles et al. (1992), after due elimination 
of other possible explanations, that the phenomenon should arise from en- 
hanced void growth under cyclic conditions. This interpretation was sup- 
ported by the results of some preliminary finite element calculations per- 
formed by these authors. These calculations simulated the cyclic behaviour 
of elementary representative porous volumes subjected to cyclically and pro- 
portionally varying overall stresses. They demonstrated a ratchet effect of 
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the porosity (progressive increase of its average value during one cycle as 
successive cycles were performed). 

The aim of the present paper is to confirm and complete these numerical 
results and see what theoretical models can say about the effect observed. It 
should be stated at once that the hardening behaviour of the matrix will be 
described in a simplistic way as purely isotropic. We are well aware of the 
fact that in reality, the matrix behaviour under cyclic conditions is certainly 
more complex and that this is bound to be important in actual experiments 
such as those of Kobayashi et al. (1991) and Schmidt et al. (1991). However, 
we do not claim to fully explain these experiments; our purpose here is solely 
to concentrate on a single feature, namely the influence of the porosity upon 
the cyclic behaviour of ductile metals, which is why strain hardening is 
described in the simplest envisageable way. 

2. The Absence of a Ratchet Effect for the Porosity in Gurson's 
Model 
It is instructive, prior to performing any numerical simulation, to see what 
Gurson's (1977) famous model says about the evolution of the porosity under 
cyclic conditions (although it was admittedly not designed for such loadings). 

The essential feature of the predictions of Gurson's model is encapsulated 
in the following statement: 

Gurson's model predicts that the porosity f of an elementary volume 
subjected to cyclically, proportionally varying overall stresses, depends only 
on the initial porosity /0, the (fixed) absolute value \T\ of the triaxiality 
T = Em/Ee9 (Em : overall mean stress, Eeg : overall Von Mises equivalent 
stress) and the algebraic equivalent plastic strain E\q defined by 

ft 
Elq= / sgn(Em(r))D*,(r)dr 

(Dlq : overall equivalent plastic strain rate). 

This means that during successive cycles, the points (E%q, f) always re- 
main on the same, single curve; in other words, the porosity is instanta- 
neously stabilized (no ratchet effect). 

This statement can be proved by adapting a simple argument due to 
Perrin (1992) to the case of cyclic loadings. In fact, it holds not only for 
Gurson's model but more generally for any model involving a yield func- 
tion depending only on Eeg, ETO, / and a single hardening parameter ä, 
of the form <f>(Eeq/ö,Em/ä, f). Indeed, let us first note that the function 
$ must be even with respect to its second argument, since the yield locus 
must be invariant under change of sign of the stresses, as usual for metal 
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plasticity. Thus the yield condition may be written in the form $(X, TX, /) 
= $(X, \T\X, /) = 0 where X = T,eq/ä; this shows that X depends only on 
/ and \T\ (which is fixed since the overall stress S is assumed to vary pro- 
portionally). Moreover combination of the classical evolution equation for 
/ resulting from plastic incompressibility of the matrix and the associated 
plastic flow rule yields (denoting by Dp

m the overall mean plastic strain rate 
and accounting for the fact that the functions d$/#Em and d$/dT,eq are 
odd and even, respectively, with respect to Sm): 

f = Hl-f)Dp
m = (l-f)^?-(X,TX,f)Dp

q 

= ^-f>^o^dtq
{XATlxJ)D- 

d$/dY,eq 

]d$/dVeq 

(w)Si^(*,mx,/) d^~sgn(Sm)^?      Sgn(T)Dp
eq      

K        ' d$/dZeq 

This equation implies that df/dEp
q depends only on /, \T\ and X, and 

hence only on / and \T\ by what precedes. It follows upon integration that 
/ depends solely on f0, \T\ and EP

q, as announced1. 
Remarks. 1. Observe that the property established holds whatever the 
evolution law for the hardening parameter CT, provided that only one such 
parameter appears in the criterion. 
2. Provided that strain hardening intervenes only through the value of ä, 
i.e. that the function $ is independent of the hardening law, the / - Ep

q 

curve is also independent of it. On the other hand, if $ depends upon the 
hardening law (for instance through the introduction of some Tvergaard 
(1981) parameter qi depending upon the hardening exponent, as suggested 
by Koplik and Needleman (1988)), the same is of course true of the / - EP

q 

curve. But this does not change the main point which is that that curve is 
identical for all cycles. 

3. Numerical Simulations of the Cyclic Behaviour of an Elemen- 
tary Porous Volume Element 
The property of Gurson's model just established strongly suggests to pre- 
cisely consider conditions of proportional overall stressing in the numerical 
simulations envisaged. Thus the triaxiality will remain constant throughout 
except for a change of sign at the beginning of each semi-cycle.   In fact, 

xIn fact, this argument only considers the plastic phases of the mechanical history (since 

it uses the yield condition); but this is sufficient since both Eeq and / vanish during the 
elastic phases. 
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this was exactly the choice made by Gilles et al. (1991), for that precise 
reason. Their simulations however suffered from the fact that they involved 
fluctuations of the triaxiality of the order of a percent (in relative value). 
Since void growth is known to be extremely sensitive to the triaxiality, such 
fluctuations might be sufficient to explain at least part of the ratchet effect 
of the porosity observed by Gilles et al. Thus, new simulations involving 
smaller fluctuations of the triaxiality are desirable. Better constancy of the 
triaxiality is achieved here by means of an algorithm described in (Gologanu 
et al., 1994); the (absolute) difference between the target triaxiality and that 
actually imposed is smaller than 10-4. 

It may be noted incidentally that there is no reason why the triaxiality 
should be considered as constant in the experiments of Kobayashi et al. 
(1981) and Schmidt et al. (1991). Thus at least part of the reduced fracture 
strength they observed in cyclic loadings may have arisen from a larger 
triaxiality (in absolute value) during the tensile phases of the cycles than 
during the compressive phases. Again, we do not claim to fully explain 
these experiments, but concentrate instead on a single feature, namely the 
progressive increase of the average porosity during one cycle with the number 
of cycles, under admittedly special cyclic loading conditions (triaxiality fixed 
in absolute value). 

It is also useful to make the following remark: for an elementary porous 
volume element with matrix made of some rigid-ideal plastic material (i.e., 
deprived of elasticity and strain hardening) and subjected to some cyclic 
loading under conditions of proportional overall stressing, the porosity will 
stabilize instantaneously (i.e., no ratchet effect will occur). (Unlike the state- 
ment made in the preceding section, this remark is independent of any ho- 
mogenized model for the overall behaviour of such an element, and only 
requires the local behaviour of the sound matrix to obey the classical rules 
of metal plasticity). To show that this is indeed true, it suffices to note 
that for such a material, starting from one possible mechanical evolution, 
one can obtain another possible evolution by changing the signs of both the 
(local) velocities and stresses. Thus the tensile and compressive phases of 
each cycle will be exactly symmetric (even if one takes geometry changes 
into account). The argument does not hold in the presence of elasticity, be- 
cause there is a change of regime from a plastic loading phase to an elastic 
unloading one at the end of each semi-cycle which destroys the symmetry. 
It is also wrong if (isotropic) hardening takes place, because the hardening 
parameter continuously increases, which introduces some irreversibility. 

Put in different terms, this remark means that the ratchet effect of the 
porosity under proportional cyclic overall stressing is fundamentally tied to 
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Figure 1: Stress-strain curve of the sound matrix used in the calculations. 

two features of the material behaviour: strain hardening and elasticity. (The 
influence of the second factor is anticipated to be much smaller than that 
of the first one, however, since elasticity effects are generally quite small in 
ductile rupture). There is a strong connection here with the observation of 
Schmidt et al. (1991) that the steeper the hardening curve, the stronger the 
reduction in fracture strength in cyclic experiments. 

Because of that remark, it was decided to consider a strongly harden- 
able material in the present study, corresponding to the (Cauchy) stress - 
(logarithmic) strain curve shown in Figure 1. The beginning of the curve 
(first 34% of deformation) corresponds to the actual behaviour of the SA-376 
TP 304 stainless steel at 290°C (this was the steel and temperature of the 
experiments of Schmidt et al. (1991)). The rest of it is obtained by extrap- 
olation using a (reasonable) hardening exponent of 0.35. Also, the influence 
of elasticity is studied by considering two values for Young's modulus: a 
normal (for a steel) value of 200,000 MPa, and an artificially enhanced one 
of 2,000,000 MPa (nearly rigid material). 

Except for the fact that the loadings considered are cyclic, the simulations 
are very similar to those of Koplik and Needleman (1988). The geometry 
considered is a cylinder with equal initial diameter and height containing an 
initially spherical void, the initial porosity being /0 = 10~3. A constant \T\ 
of 2.7 (typical value near the tip of a crack) is imposed by means of uniform 
horizontal and vertical displacements prescribed on the lateral surface and 
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Figure 2: lasa function of Eeq; E = 2 X 105 MPa, tensile first semi-cycle. 

the top cap, respectively, all surfaces being free of shear forces. The axial 
overall stress is larger than the lateral one. Three cycles are simulated, start- 
ing either with a tensile phase or a compressive one. It may seem that these 
two cases are identical except for a shift of one semi-cycle, but they are not 
in fact because the first semi-cycle plays a special role owing to the fact that 
it is the only one that starts with a pristine material. The value of the ampli- 
tude (in overall strain) of all cycles is AEeq = 0.08. Eeq = |^n^ (h : current 
half-height of the cylinder; r : current radius) here is the algebraic equivalent 
total overall strain, which differs from the algebraic equivalent plastic overall 
strain E? defined in the preceding section only because of elasticity effects. 

Indeed in the absence of elasticity, Eeq = sgn(Sm). § (£ - j:)   = § (f - j:) 

because the sign of Em is always the same as that of | f ^ — £ J . 

All computations use the Large Strain Plasticity option of the SYSWELD 
FE code developed by the FRAMASOFT+CSI Company (Leblond, 1989). 

Figure 2 shows the relative porosity f/fo as a function of Eeg for all 
three cycles in the case where E = 200, 000 MPa and the first semi-cycle 
is tensile. One observes a typical Christmas tree shape, exactly as in the 
work of Gilles et al. (1991). This eliminates all possible remaining doubts 
about the validity of the conclusions of that work due to the fluctuations 
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FE result 
DLP model 
"improved" 

model 

JmaxIJO 
cycle 1 

3.81 
5.19 

5.19 

Jmax I JO 
cycle 2 

5.51 
6.99 

5.51 

Jmax/ Jo 
cycle 3 

7.21 
7.81 

5.58 

Jmin I Jo 
cycle 1 

1.44 

0.77 

1.33 

Jmin I Jo 
cycle 2 

1.88 
0.60 

1.38 

Jmin I Jo 
cycle 3 

2.38 
0.51 

1.41 

Table 1: ^f*-, ^f^ values; E = 2 x 105 MPa, tensile first semi-cycle. 
/o 

Jmax/ JO 
cycle 1 

Jmax/ Jo 
cycle 2 

Jmax/ Jo 
cycle 3 

Jmin/ Jo 
cycle 1 

Jmin / JO 
cycle 2 

Jmin / JO 
cycle 3 

FE result 
DLP model 
"improved" 

model 

3.74 
5.26 

5.30 

4.79 
7.35 

5.80 

5.36 
8=46 

5.99 

1.38 
0.75 

1.32 

1.59 
0.59 

1.38 

1.75 
0.50 

1.42 

Table 2: -%ai, ^ values; E = 2 x 106 MPa, tensile first semi-cycle. 
/o 

of the triaxiality. In order to save space, the results corresponding to the 
other cases envisaged are shown only in the form of tables indicating the 
sole maximum and minimum values of f/f0 for each cycle (Tables 1 to 4). 
Two essential observations can be made. First, both fmax/fo and fmin/fo 
increase with the number of cycles in all cases. Second, the effect is more 
prominent when E takes on its lower (normal) value; in fact, the influence 
of elasticity is much larger than one would expect a priori. 

4. Comparison with the Predictions of the Gurson and DLP Mod- 
els 
In the case of a tensile first semi-cycle, and with a (reasonable) value of 1.35 
for the Tvergaard (1981) parameter qi, the predictions of the Gurson model 
are as follows (elasticity being disregarded for simplicity, the influence of 
the elastic moduli on the values found being quite weak): fmax/fo = 21.4, 
fmin/fo = 1 for all cycles. Comparison with the values given in Tables 1 
and 2 shows that these predictions are utterly erroneous2. However they are 
at least conservative, since the maximum porosities predicted, which govern 
the onset of coalescence of cavities and final failure, are greater than those 
found numerically. The situation is worse in the case of a compressive first 

2 One may be surprised by the unusually large extent of the gap; such an extent is to 
be related to the steepness of the hardening curve considered (which is realistic, however, 
for stainless steels). 



306 J. DEVAUX et al. 

Jmax/JO 
cycle 1 

Jmax/JO 
cycle 2 

Jmax/JO 
cycle 3 

Jmin / Jo 
cycle 1 

Jmin/ JO 
cycle 2 

Jmin / JO 
cycle 3 

FE result 1.61 2.51 3.77 0.35 0.55 0.78 

DLP model 1.68 2.04 2.24 0.09 0.09 0.08 

"improved" 
model 

1.16 1.23 1.26 0.21 0.24 0.26 

Table 3: %S£, ty^ values; E = 2 x 105 MPa, compressive first semi-cycle. 
JO     '        JO 

Jmax/ JO Jmax/ Jo ■ Jmax/ JO Jmin / Jo Jmin/JO Jmin/ JO 

cycle 1 cycle 2 cycle 3 cycle 1 cycle 2 cycle 3 

FE result 1.48 1.92 2.31 0.35 0.49 0.60 

DLP model 1.83 2.32 2.64 0.09 0.09 0.09 

"improved" 
model 

1.25 1.36 1.42 0.21 0.25 0.27 

Table 4: %Si, %"*■ values; E — 2 x 106 MPa, compressive first semi-cycle. 
JO     '        JO 

semi-cycle. Indeed the values resulting from Gurson's model (for a rigid- 
plastic material), namely fmax/fo = 1, fmin/fo = 0.01 for all cycles, are not 
only erroneous but non-conservative, the value of fmax being smaller than 
those found numerically (see Tables 3 and 4)- 

It follows from the statement made in Section 2 that the basic explanation 
of the failure of Gurson's model is not to be found in the analytic form of 
the criterion or the evolution equation for the hardening parameter ä : it 
lies in the fact that this parameter is unique. A new criterion preserving the 
essential features of that of Gurson but involving two hardening parameters 
was proposed by Perrin (1992) and Leblond et al. (1995): 

E2 

-^ + 2?i/ cosh 
3 ETO 

2 E2 
i-tf/' = o 

The new model (hereafter referred to as the DLP model) does not predict 

instantaneous stabilization of the porosity in cyclic experiments as that of 
Gurson, because the history-dependent ratio E1/E2 now appears in the evo- 
lution equation for /. However, the prime motivation for the introduction 
of Ei and E2 was not in fact that one, but the observation that for a hol- 
low sphere prestrained in a purely hydrostatic way, the overall yield stresses 
E^l, E^ under purely deviatoric and purely hydrostatic loadings obey the 
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rigorous inequality 

^eq S™ 
< 

1 - / " -(2/3)*n/ " 

This is incompatible with Gurson's original model (with qi = 1 for a hollow 

sphere) which equates both sides of the inequality to ä, but, provided that 
Si < S2, compatible with the new variant proposed which equates the left- 
and right-hand sides to Si and S2 respectively. The formulae proposed for 
these parameters were based on an approximate calculation of S^ and S^ 
for a hollow sphere after some axisymmetric prestraining. That prestraining 
was taken as monotonic and proportional3 in order to calculate Si and S2 
as functions of two parameters only (in addition to the initial porosity /o), 
namely 

££ = jfl^(r)dr    and    ££ = jjZ^(r)|dr . 

The DLP model was not originally intended to reproduce the behaviour 

under cyclic loadings, because of the assumption of monotonicity of the pre- 
straining introduced to simplify the calculation of Si and S2. It is interesting, 
however, to see what its predictions are for the cyclic cases considered here. 
These predictions are shown in Tables 1 to 4- It can be seen that the effect 
of elasticity predicted is unfortunately opposite to that actually observed in 
the numerical simulations: the lower the value of E, the lower the increase 
of fmax Per cycle. Also, the /m,„ values predicted are rather poor: they are 
too low and tend to decrease, instead of increase, with the number of cycles. 
However, the major feature of interest is the value of fmax (which governs 
coalescence), not that of /m;n, in the sole case of a normal E, and it can be 
seen that the model gives satisfactory predictions in that respect. 

5. Can One Improve on the DLP Model? 

One seemingly obvious improvement of the DLP model consists in drop- 
ping the hypothesis of monotonicity and proportionality of the prestraining 
in the calculation of Si and S2. It is then no longer possible to express these 
quantities in terms of only two parameters, E%q and E^. However, it remains 
possible to calculate them as functions of the whole sequence of successive 
values of D^q{r) and Z>^(r), 0 < r < t. Tables 1 to 4 show the results 
obtained in that way.  It can be seen that the prediction of /m8n values is 

3 Of course, this hypothesis was temporary and introduced only to simplify the calcula- 
tion of Ei and £2; the model was later used for totally arbitrary mechanical histories, the 
values of those parameters being then assumed to be the same as if the volume element 
studied had been strained monotonically and proportionally up to the instant considered. 
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indeed better than before; in particular these values now increase with the 
number of cycles, as desired. However, the increase of fmax per cycle is still 
wrongly predicted to decrease when E decreases. Also, more importantly 
and quite deceivingly, it is now substantially underestimated. 

With regard to the effect of elasticity, prior to envisaging any improve- 
ment of the DLP model, one must answer the following two questions: first, 
why does it predict (just as Gurson's original model) that the increase of 
fmax per cycle decreases when E decreases? Second, why does precisely the 
contrary occur in the numerical simulations? 

The answer to the first question is simple: both models say that when 
E takes on lower and lower values, more and more of the amplitude (in to- 
tal strain) of each semi-cycle is lost in the starting elastic phase involving 
no variation of the porosity, resulting in a smaller increase of the porosity 
per cycle. The answer to the second, less obvious question can be found by 
carefully examining the numerical f/f0 - Eeq curves for the normal value of 
E. One thus observes on Figure 2 that at the beginning of all semi-cycles 
from the 3rd one, there is a short phase (noted EP) where the porosity varies 
more than before4. During that phase, the inner zones of the spherical shell 
are already plastic but the outer ones are still elastic. Therefore numerical 
experience, if not theory, reveals that partial plasticity of that shell favours 
variations of /. Since the lower the value of E, the longer the phase of partial 
plasticity, this explains why the increase of / per cycle is maximum when 
E is low. Unfortunately, all existing models make the simplifying hypoth- 
esis that each porous volume element is either entirely plastic or entirely 
elastic; therefore they cannot incorporate this effect. A major obstacle is to 
be encountered in the derivation, based on homogenization, of some model 
including it. Indeed one is faced with the difficult task of extending Gur- 
son's classical analysis of a hollow, rigid-plastic sphere subjected to some 
axisymmetric loading so as to include the possible existence of an external 
elastic region surrounding the plastic core around the void. 

It should be noted that a similar surprisingly strong effect of elasticity was 
encountered by Tvergaard et al. (1992) in the slightly different but related 
context of cavitation instabilities in plastic solids. The extent of that effect 
was explained by the fact that large amounts of elastic energy can be stored 
in the outer elastic region and subsequently transferred to the inner plastic 
core, thereby promoting cavitation. Although this explanation may seem to 
be quite different from that expounded here at first sight, there is in fact a 

4In the 4th and 6th semi-cycles, this occurs after an even shorter initial phase, noted 
E, where it varies less than before; this is because the material is undergoing purely elastic 
unloading then. 
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close connection between the two. Indeed in both of them, emphasis is not 
placed on elasticity effects in the elastoplastic region, but on the existence 
of a large purely elastic zone around it. 

In conclusion, the use of the DLP model seems the only possible choice in 
the case of cyclic loadings, in view of the breakdown of Gurson's original pro- 
posal and the difficulties encountered in the search for more refined models. 
That choice is not absurd, in spite of the deficiencies of some of the predic- 
tions of the DLP model, since the parameter of major interest, namely the 
maximum porosity during each cycle, is predicted with a reasonably good 
accuracy. 
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PHASE  TRANSITIONS  IN FRACTURE  AND CRYSTALLIZATION 
PROCESSES 

L.R.BOTVINA 
Professor, A. A.Baikov Institute of Metallurgy, 
Russian Academy of Science, 117911, Leninskii 
prospekt 49, Moscow, Russia 

1. Introduction 

Comparative analysis of the basic properties of fracture processes and crystal- 
lization, in particular their stepwise character, shows that fracture may be con- 
sidered like crystallization, from the standpoint of phase transition theory [1]. 

In Fig.l we present schematically typical fracture kinetic curves K = fij) 
obtained under a constant value of the parameter P defining the test conditions 
(temperature, loading rate, etc.; K is a certain strain and/or fracture property; 
T is the time). It is clear that these curves remain similar to each other until a 
certain critical value of the parameter P is reached. For P = Pc, the second 
steady-state stage disappears on the fracture kinetic curves and they become 
closer to straight lines. 

Oc3 

Figure 1. Typical time dependences of a characteristics (K) of deformation and/or 
fracture for different values of a parameter P governing the loading conditions : 
/, //, III — stages of damage accumulation. 

Many dependencies (both kinetic and parametric) of the deformation and 
fracture characteristics are similar to the curves shown in Fig.l. These include 
creep curves (for different stresses or temperatures), deformation curves (for 
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different loading rates or temperatures), kinetic curves of fatigue crack growth, 
wear curves, and the dependencies of internal friction in material, and swelling 
after an irradiation dose, etc. 

The initial stage (/) on the fracture kinetic curves may be absent. This is 
most often due to the difficulty in the recording of this stage because it requires 
finer measurements than registration of fracture processes at stages 77 and ///. 
However, the other trends are preserved. The size of stage // decreases as P 
increases over a rather broad range. Close to Pc, the dependence of the lifetime 
on P increases, while the scatter of experimental points for lifetime also 
increases. Similar kinetic curves for fatigue failure are presented in Fig.2a. 

The comparison of the fracture kinetic curves presented in Fig.l with the 
isotherms for the liquid-gas phase transition plotted in pressure (p) vs. density 
(p) coordinates [2], shows that the fracture curves have a shape similar to the 
isotherms at different temperatures. On each of the fracture curves, as on the 
liquid-gas isotherms, we can isolate an initial section (0 - TX) within which the 
first derivative of the characteristic K decreases; the second steady-state stage 
(T2 - Tj), for which dK/dr is almost constant and the third stage where the 
development of the process is unstable and the derivative dKldr increases. 

The effect of the parameter P is characterized by the fact that with an 
increase in P, the size of the second steady-state stage of the fracture process 
decreases and the first derivative of the characteristic K increases. For the 
critical values of Pc and rc, the second stage on the curves disappears (r2 - TX = 
= 0) and the third stage follows the first stage. In this case, the time 
dependence of the characteristic K becomes close to linear, as does the isotherm 
p = f(p) when the critical temperature is achieved under the liquid-gas 
transition conditions. 

By analogy to the liquid-gas phase transition, the closeness to the critical 
point of the fracture process (in this case, to the point with coordinates Pc, TC) 

is defined by the difference TZ - TU 

This difference may serve as an order parameter for the fracture process of 
a solid. In this case, we can probably assume that the process itself undergoes 
the phase transition at the point with coordinates Pc, TC. What can we say about 
phase transition in this case? The fracture mechanisms are different under 
different conditions. However, all of them are connected with nucleation and 
gradual accumulation of different types of damage. At the initial stage of 
fracture (region / in Fig.l), pores are only nucleated and the damage process 
is not yet developed, a dislocation structure is formed which causes strain-har- 
dening of the material. Accordingly, we can consider that at stage I the material 
does not contain pores or contains significantly less of them in comparison with 
the number of defects at the other stages. At stage //, the accumulation of pores 
is going on and the material can be considered as a "two-phase" one, i.e. 
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consisting of damaged and undamaged volumes. At stage /// the rapid growth 
of pores, the formation of macrocracks and fracture are going on. 

Thus, the dashed curve in Fig.l, similar to the coexistence curve for the 
liquid-gas phase transition, separates the "two-phase" region in which the 
specimen consists of pores or microcracks and sections of undamaged material. 

Such a representation of the two-phase structure of a solid under loads is 
close to Frenkel's idea [3] which considers a typical crystal of a monatomic 
substance as a binary material consisting of proper atoms and vacancies which 
are "atoms" of the second substance (voids). If the material is a two-phase one 
at the steady-state stage of fracture, we can assume that upon achievement of 
critical conditions, a "phase transition" occurs with formation of a new phase: 
a macrocrack. 

In the crystallization process, the role of pores is played by particles of the 
solid phase already crystallized from the melt; therefore the steady-state stage 
on the crystallization curves (plotted in viscosity of the melt vs. fraction of solid 
phase coordinates) is connected with development of a two-phase structure, and 
the size of this stage (determined by the volume fraction of the solid phase) is 
the order parameter of the crystallization process. 

Let us estimate the order parameters and the critical exponents for fracture 
processes under fatigue, creep, and impact loading conditions, and also for the 
crystallization. 

2. Fatigue 

In Fig.2a, we present the dependencies of the fatigue crack length in notched 
specimens of aluminium alloy on the number of cycles. 

As we approach the critical stress, the sensitivity of the alloy to a stress 
variation abruptly increases (Fig.2b). This is accompanied with the transition 
of fatigue fracture mode from the normal rupture under low stress amplitudes 
to slantwise shear mode under high stresses. When the specimens without 
notches are tested, at the critical stress amplitude the number of origins on the 
fracture surfaces from which fatigue cracks develop increases. In contrast to the 
fracture surfaces at low stresses, on which only a single origin is observed, the 
fracture surface becomes multiorigin. One more important feature is observed: 
the fatigue curve and the kinetic diagram for fatigue failure, plotted in the crack 
rate vs. the range of the stress intensity factor coordinates, have discontinuities 
corresponding to the stress at which the fracture mechanism changes and a high 
sensitivity of the lifetime to the stress appears [1]. 

In estimating the order parameter (N) and its normalized value (N-Nc)/Nc, 
the following power-law relation has been established (Fig.2c): 

\(N-Nc)/Nc\=A\[(o-oc)/oc]\* 
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where a and ac are the instantaneous and critical stress amplitudes respectively. 
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Figure 2. Dependencies of the fatigue crack length (/) on the number of loading cycles (N) for 
notch specimens of B95T1 aluminium alloy, tested at loading frequency of 120 Hz, cycle 
asymmetry R=l, and stress amplitudes (MPa): 
300 (i), 260(2), 220(5), 200 (4), 190 (5), 180 (6), 160 (7), 140 («), 120 (9) and 100 (10) (a), 
the relation between the order parameter and the stress (b), and between the normalized values of 
the order parameter and stress (c): X — points of the curve from whose coordinates we plotted the 
dependencies in Fig.2b and 2c. 

The critical exponent for the given alloy under the investigated loading 
conditions is jS = 7. An increase in the frequency of cyclic loading leads to 
decreasing the critical exponent. 

3. Creep 

In Fig.3a, we present the creep curves for steel, plotted for different stresses 
[4]. 

An estimate of the order parameter from these curves also leads to a 
power-law equation (Fig. 3b): 

|(T-TC)/TC| =B\[(a-ac/ac]y 

In this case, the critical exponent y varies from 1.9 to 4 as a function of the 
testing temperature : the lower the temperature, the lower the critical exponent. 

For the creep close to the critical point, as for the fatigue, the sensitivity of 
the deformation values to the stress variation increases and the fracture 
mechanism changes. 
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Figure 3. Creep curves for the steel 911 44 [4] at 585 °C and different stresses (a) and the 
relation between the normalized values of the order parameter and the stress (b) (MPa): 
240 (i), 200 (2), 180 (5), 160 (4), 150 (5), 140 (6) and 130 (7). 

4. Impact loading 

In Fig.4, we present the temperature dependencies of the impact toughness A 
of carbon steel with different carbon contents [5], and also the dependence of 
the normalized order parameter (A-AC)IAC on the normalized carbon concentra- 
tion. The critical exponent in impact loading is somewhat lower than that for 
fatigue and creep. ^^ 

Figure 4. Temperature dependencies of the energy of impact fracture \A) for different 
carbon steels [6] and relation between normalized values of the order parameter and the 
carbon concentration (C): 
0.01 %C CO, 0.11%C (2), 0.22%C (3), 0.31%C (4), 0.63 %C (5). 

Furthermore, the impact toughness curves, contrary to the fatigue and creep 
curves, are not time-dependent; the two-phase region bounded by the dashed 
coexistence curves is connected with different fractions of brittle and ductile 
regions on the fracture surface. With an increase in the carbon content of the 
steel, the extent of the two-phase region and the slope of the impact toughness 
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curve decreases, which leads to convergence of the horizontal sections 
corresponding to ductile and brittle fractures (Fig. 4). This is probably due to 
a transition from a localized ductile-brittle fracture (in which we can visually 
observe a region of ductile fracture located at the tip of the notch and a region 
of a "brittle square") to a delocalized or diffuse fracture [6], on the fracture 
surface of which we observe alternating brittle fracture facets and ductile 
dimples. Formation of a diffuse fracture may be the result of an increase in the 
strength of material [5]. 

Thus the phase transition in the given case is caused by the appearance of a 
macroscopically brittle but microscopically delocalized diffuse fracture. 
Accordingly, we can consider that the process of transition from the ductile 
state to the brittle state had been completed at the macroscopic level, but 
continues at the level of 2-3 orders of magnitude higher (if the level of the 
process is characterized by the length of the brittle crack). The above-mentioned 
power-law relations obtained for fracture processes probably stem from 
power-law strength characteristics, but they may prove to be useful in 
estimating the lifetime of a material or structure in the stage preceding 
generation of the critical damage or the critical macrocrack length. 

5. Crystallization 

In crystallization, the role of pores is played by particles of the solid phase. 
Therefore, as the order parameter, in this case we will use the length of the 
steady-state stage of crystallization, determined by the volume fraction of the 
solid phase. 

Let us consider crystallization of semi-solid materials, studied in detail in 
[7]. Semi-solid materials include those containing 50-60% already crystallized 
phase and are used to obtain composite materials or for other final shaping 
processes. The major factors determining the mechanism of crystallization in 
such materials are the cooling rate and the rate of shear of the liquid metal. 
Shearing the liquid metal during the early stages of solidification promotes a 
breakdown of the dendritic structure, and as a result the viscosity decreases and 
a spheroidal structure forms. Thus, the phase transition at the critical point is 
connected with transition (under decreasing the shear rate) from a spheroidal 
structure to a dendritic one. 

As we see from Fig. 5b, the crystallization process of the alloy Al-4.5%Cu- 
-1.5%Mg is characterized by a significantly smaller critical exponent compared 
with the exponents characterizing the fracture processes but the relation for the 
order parameter is similar to the preceding relations: 

|(/s-//)//S
C|=C|[(Y-Yf)/Ycl|

a 
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where fs is the volume fraction of the solid phase; y is the shear rate of the 
melt. The phase transition during crystallization in which the first derivatives 
of some physical quantities change in a jumpwise manner and heat is evolved 
is traditionally classified as the first-order phase transition [2]. As far as the 
phase transitions during fracture are considered, they have features of both 
first-order and second-order types of phase transitions. In fact, at the critical 
point for cyclic loading, we observe an abrupt increase in the temperature of the 
specimen surface [1], the crack growth rate, and the acceleration of the crack 
growth, i.e. the first and the second derivatives of the crack length. In other 
cases of failure, no increase in the temperature of the specimen surface is 
observed at the critical stress. 

/j.Pasec 
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'x 
< 

w 
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0,6   fs 

Figure 5. The viscosity of the alloy Al—4.5%Cu—1.5%Mg for constant cooling 
rate (0.03 C/sec) and different shear rates (y) of the melt [7] (a) and the relation 
between the normalized values of the order parameter and the shear rate of the melt 
(b): 7 = 90 1/sec (1), 180 1/sec (2), 330 1/sec (3), 560 1/sec (4). 

However, the approach used and the proposed estimate of the critical 
exponents for fracture and crystallization make it possible to compare the 
characteristics of phase transitions in different media. 

The estimations of the order parameters and the critical exponents character- 
izing transition from laminar to turbulent flow in fluids and solids confirm the 
above opportunity [8]. 

6. Plastic Deformation of Monocrystals 

Plastic deformation of monocrystals with face centered cubic structure occurs 
in several stages. 



318 L.R.BOTVINA 

During the initial stage, slip develops along planes of one slip system 
because only this system operates. Such a plastic flow has been called by 
Cottrell "laminar plastic flow". During this stage the stress depends linearly on 
the strain, and the material is not strengthened. 

With increasing plastic deformation, two or more slip systems start to 
operate, therefore a slip on the intersecting slip system develops. This is 
accompanied with the interaction of dislocations of two slip systems, a 
cross-slip, a turn of lattice and local microvolumes of the crystal. Such a plastic 
flow is "turbulent" according to Cottrell's definition. 

At the next stage these processes result in a developed turbulent plastic flow 
and strengthening of the crystal. The stress-strain dependence becomes a power 
law one. 

Thus during the intermediate stage, the crystal structure may be considered 
as a two-phase one, i.e. consisting of the laminar and turbulent plastic flow 
regions. Then the strain value, corresponding to this stage may serve as the 
order parameter of the plastic deformation process. 

With increase in the test temperature this intermediate stage disappears, the 
order parameter becomes equal to zero and the turbulent plastic flow follows 
the laminar one. 

As it can be seen in Fig.6, in this case the order parameter is also a power 
law function of the test temperature. 

Tf-Tc 

Figure 6. Plastic deformation curves for the Ni-50%Co monocrystals at shear rate 0.003 1/s [9] 
and the relation between normalized values of the order parameter and temperature (b): 
(•) - beginning transition stage, (O) - end of transition stage , ~i- neck formation , (C)- turning 
crystal axis 
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7. Flow of Fluid in Smooth Pipes 

By analogy with the laminar-turbulent transition in solids, it is of interest to 
consider similar transition in fluids. In Fig. 7, dependencies of the pressure 
variation rate on the fluid flow rate in pipes of different diameters are 
presented, plotted by Reynolds [10] in physical and logarithmic coordinates. 
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Figure 7. Curves of Reynolds for the fluid flow in pipes of different diameteres (a) [10] , the 
relation between the normalized values of the order parameters and pipes diameteres (b), and the 
coexistence curve for the laminar-turbulent phase transition (c): 
P - pressure, i — dP/dx, i = 2i/(iT - ij , v- flow rate, L - end of laminar flow, T - beginning 
turbulent flow ; d -pipes diameters: 0.65mm (i), 6.15 mm (2), 12.7 mm (3) , 14 mm (4) 27 mm 
(5), 81,9 mm (6). 
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The curves in physical coordinates, similar to the deformation curves of 
monocrystals, consist of a linear region of laminar flow, a laminar-turbulent 
transition region and a turbulent one. 

With increase in the pipe diameter the laminar and laminar- turbulent regions 
decrease. In Fig. 7.c the two-phase transition region bounded by the dashed 
coexistence curve is shown. Here % and i*L are the relative values of the 
pressure variation rate corresponding to the end and the initiation of the 
transition region. If we use the difference i*T — £ as the order parameter, we 
obtain the curve in Fig. 7 consisting of two linear parts with two critical 
exponents. In case of such choice of the order parameter, the critical exponents 
are negative and their absolute values decrease near the critical point. 

The noted analogy of processes occuring in different media is probably 
connected with similar behaviour of the change in entropy characterizing the 
indicated processes. 

This work was carried out with the financial support of the Russian 
Foundation for Basic Research, project 94-01-00475-a. 
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NONLINEAR CRACK-BRIDGING PROBLEMS 

L.R. FRANCIS ROSE 
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Melbourne, Australia 

Abstract. The influence of a progressive, time-dependent, decay in crack- 
bridging efficiency is investigated, with particular attention to two 
configurations involving a fully bridged semi-infinite crack. First, the evolution 
of the stress intensity factor K with time is considered, assuming that no crack 
growth occurs. It is shown that, at any given time t, K can be expressed in terms 
of the complementary energy for a stress/stretch curve applicable for that instant 
t. However, that curve is not prescribed a priori: it must be derived by first 
solving for the spring stretch, and then calculating the associated transmitted 
stress at every location along the bridged crack. The resulting stress/stretch 
curve at any instant t is generally non-linear, even when the bridging is 
modelled by linear viscoelastic springs, for example; this nonlinearity results 
from the load-history dependence of the degradation. Similar difficulties are 
also encountered for the second case considered, viz. steady-state crack growth. 
A physically plausible approximation, leading to a useful, conservative, estimate 
for K is proposed for the first case; a comparable estimate for the second case is 
not yet apparent. 

1.   Introduction 

Crack-bridging models have attracted considerable attention recently because 
they arise in a variety of contexts, and they provide a computationally efficient 
approach for characterising the overall material or structural response to applied 
loads. The essential features of these models have now been well characterised 
for time-independent bridging laws (Rose, 1987). The present work considers 
the much more difficult, but also more widely applicable case, where the 
bridging law is time-dependent, and generally non-linear, reflecting a 
progressive degradation, or a relaxation, of the bridging mechanism. Efficient 
numerical methods have been developed for solving the non-linear integral 
equation governing these problems (Cox and Rose, 1994), but the emphasis is 
placed here on characterising the possible regimes of behaviour and identifying 
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the relevant non-dimensional combinations of parameters, rather than on 
detailed numerical calculations for specific cases. 

A key result for the case of time-independent bridging is the existence of a 
finite upper bound K«, for the stress intensity factor (under a fixed uniform 
applied stress and assuming a fully bridged crack). This upper bound is 
approached asymptotically (from below) with increasing crack length. Once 
this asymptotic character of a bridged-crack response is recognised, an explicit 
estimate can be derived for the limiting value K«, by energy-balance arguments 
applied to an incremental extension of a fully-bridged semi-infinite crack. This 
approach appears to have been first developed in the context of crack repair by 
bonded reinforcements (Rose, 1982), and independently in the context of fibre- 
bridging of matrix cracking in brittle matrix composites (Marshall et al, 1985; 
Budiansky et al, 1986; McCartney, 1987). From a practical viewpoint, this 
upper bound K«, can be used as a convenient, conservative estimate for K for 
repair design, and indeed this approach has now been applied and thoroughly 
validated through extensive testing and comparison with finite-element analysis 
in relation to a safety-critical repair to primary structure for a military aircraft 
(Rose et al, 1995). An important issue in extending the scope of this analysis 
and design procedure is to assess the influence of a progressive decay in crack- 
bridging efficiency. This paper presents some preliminary results obtained to 
date on this issue, and formulates some definite problems requiring further 
detailed analysis. 

2.   Problem Statement 

Consider a standard centre-cracked panel, with a fully bridged crack of length 
2a, subjected to a uniform remote stress 

<Tyy = 0-a    ,    X2 + y2->«>   - (2.1) 

The presence of a crack bridging mechanism (e.g. bonded reinforcements or 
fibre bridging) results in a non-zero load being transmitted across the crack. 
The bridging mechanism is characterised by a traction law which needs to be 
specified. In most previous studies, this law is prescribed as a functional 
relation between the stress transmitted and the local crack-opening displacement 
(or spring stretch) 8, for example of the form 

ayy(a<x<-a,y = 0±) = E,(t.(8), (2.2) 

8 (x)s uy (x, y -> 0+) - uy (x, y -> 0-) (2.3a) 

= 2 uy (x, y -> 0+) (2.3b) 
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where E' denotes as usual the reduced Young's modulus (Rose, 1987), and uy 

the y-component of the elastic displacement, whereas <j) is a specified, possibly 
non-linear, function. 

In the present work, it is envisaged that the crack bridging efficiency may 
suffer a progressive decay. The appropriate traction law will depend on the 
precise mechanism for this decay, which will vary from one context to another. 
This opens up a wide range of possible responses which can only be fully 
characterised through extensive numerical computations on a case-by-case 
basis. Nevertheless, it is possible to characterise some important general 
features of the response, albeit qualitatively, as will be shown below. 
Furthermore, a relatively comprehensive characterisation can be attempted for 
the case where the bridging is modelled by linear viscoelastic springs. This case 
retains, in the simplest mathematical form, the essential features of a 
dependence on the previous history of deformation (or of spring stretch) and of 
a relaxation time for the decay of crack-bridging tractions. The results obtained 
for that case can therefore be expected to provide useful insights, applicable to 
the more general case of non-linear time-degrading springs, at least for cases 
which do not involve a distinct characteristic stress for the onset of degradation 
(a damage threshold stress). A specific example of the latter type has been 
studied by Cox and Rose (1994), where the decay is attributable to cyclic 
fatigue. As noted in that reference, the results obtained for cyclic degradation 
can be readily re-interpreted as results applicable for monotonic (static) loading, 
and vice versa. 

The problem being addressed is that of determining the crack opening 
displacement, or spring stretch, 5(x;t), and the associated stress intensity factor 
K(t), for a specified time-dependent traction law, and a specified load history. 
For simplicity, it will be assumed that the load is applied at time t = 0, as a step- 
function in time, 

ayy(x,y;t) = aaH(t)  ,  x2 + y2->°o, (2.4) 

and that the response is quasi-static, so that the stress state (2.4) would prevail at 
all points x, y in the absence of the centre crack. Thus, the load history 
introduces no characteristic time. Furthermore, the material surrounding the 
crack is assumed to be linearly elastic, with crack growth occurring when K(t) 
exceeds a threshold value K^,, according to a prescribed growth-law of the usual 
form, 

da/dt = f(K(t)-Kth). (2.5) 

Provided that no crack growth occurs, ie. for K(t) < K^, a time dependence 
enters solely through the crack-bridging traction law, which has yet to be 
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specified. This traction law can include a failure criterion. However, the 
possibility of failure for the crack bridging reinforcement will not be considered 
in the present work, to restrict the analysis to a more manageable scope. Thus, 
on load application at t = 0, two possibilities arise, depending on whether the 
instantaneous stress intensity factor K(t->0+) exceeds or is less than the 
threshold Kth. In the latter case, the problem is to determine the evolution of 
K(t) with time for a crack of fixed length, and the incubation time tj required for 
K(t) to reach the threshold value Kth. In both cases, once the crack begins to 
extend, it is assumed that freshly created bridging springs appear between the 
crack faces; the problem is again to determine K(t), but now keeping track of 
the evolving crack length a(t) as well. An important aspect of the latter problem 
is to establish the conditions or requirements for crack growth to evolve to a 
steady state (or a suitably defined quasi-steady state), and to fully characterise 
this eventual steady state growth, if it can occur. 

These problems can be formulated as singular integral equations in a variety 
of distinct (but ultimately equivalent) forms (McCartney, 1987; Nemat-Nasser 
and Hori, 1987; Rose, 1987; Budiansky et al, 1988; Willis and Nemat-Nasser, 
1990; Cox and Marshall, 1991; Cox and Rose, 1994). Given the insights 
already mentioned above for time-independent bridging, it can be expected that 
the most significant results from a practical viewpoint can be derived by further 
restricting attention to problems involving a semi-infinite crack, rather than a 
finite-length centre crack. The results obtained to date are summarised in the 
following sections. 

3.   Fully-bridged semi-infinite crack 

Consider the response of a fully bridged semi-infinite crack, along -oo < x < 0, y 
= 0, to the step-function loading (2.4), assuming first that K remains below Kth, 
so that no crack growth occurs. The primary objective here is to quantify the 
evolution of K with time. 

The most convenient approach is to use the Eshelby-Rice J-integral taken 
around the closed contour shown in Fig. 1, as proposed by Marshall and Cox 
(1988) for time-independent bridging. Exploiting the path-independence of the 
J-integral to deform the contour to a limiting configuration for which the 
integral can be readily evaluated, one obtains 

Kfip(t)/E'=Jtip(t), (3.1a) 

.Mt)- |"C°ayy(x,y = 0;t)a5/ax(x;t)dx, (3.1b) = cr a 
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where 

8OB(t)s5(x->-oo,t) (3.1c) 

The main complication, relative to the time-independent case, is that the integral 
in (3.1b) is now much more difficult to evaluate, because at any given time t, the 
relation between the transmitted stress ayy (x, y = 0; t) at a given station x along 
the crack and the spring stretch 8 (x; t) at that location, is not prescribed a 
priori; that relation will generally depend on the prior history of spring stretch at 
x, which in turn can only be determined by solving an integral equation for 8 (x; 
t) at every previous instant of time in the interval (0, t). 

A A_ 

Figure 1. A fully bridged semi-infinite crack subjected to a uniform remote 
stress aa, showing the choice of coordinate axes, and the J-integral contour used 
for evaluating K(t). 

To proceed further, the constitutive equation prescribing the time-dependent 
response of the bridging reinforcement must now be specified. It is convenient 
at this stage to restrict attention to bridging by linear viscoelastic springs, 
characterised by the following relation between the transmitted stress and the 
spring stretch, 

E'   ft 58 
o-yy (x, y = 0; t)= —   [ k (t - T) — (x; t) dx , (3.2a) 

2  * at 

- E' k * 8 , 
2 

(3.2b) 

where the asterisk in (3.2b) denotes a Stieltjes convolution (Christensen, 1982), 
and the time derivative in (3.2a) is to be interpreted as a distributional derivative 
if the load history involves step discontinuities.   Using a circumflex to denote 
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the Laplace transform of a variable with respect to time t, this relation can 
equivalently be written as follows, for the step-function loading (2.4), 

dyy(x,y = 0;s)=-E'sk(s)5(x;s), (3.3) 
2 

where s denotes the transform parameter. A factor V2 is used in (3.2) and (3.3) 
to retain a close correspondence with the notation previously used for linear 
elastic springs (Rose, 1987). 

Following the procedure outlined by Rose (1987), an integral equation can be 
derived for the spring stretch at any given time t, in terms of the dislocation 
density D (x; t) at time t, where 

5(x;t)= j°Z)(S;t)d$,      -«><x<0. (3.4) 

Taking the Laplace transform over time ofthat integral equation leads to 

E 

An 

A 

1  f£M^ =   .  ^L + !E'Sk(5)  j° Dß;s)d§ (3.5) 
u   x<°   x - I s      2 * 

where the relevant solution is required to have an inverse square-root singularity 
for x -» 0-. This last equation is identical to the one for time-independent 
linearly elastic springs, provided that sü(s) is interpreted as the spring constant 
and aa/s as the applied stress, in keeping with the well-known elastic- 
viscoelastic correspondence principle (Christensen, 1982). Thus, an explicit 
analytic solution of (3.5) for D (x ; s) is available (Rose, 1987; Budiansky et al. 
1988), albeit in a rather complicated form. 

Unfortunately, it would seem to be necessary to obtain the inverse transform 
of this expression for £)(x ; s) before the integral in (3.1b) can be evaluated, 
because the integrand involves a product (rather than a convolution) of 
functions of time. Thus, it would seem to be quite challenging to characterise 
accurately the evolution of K(t) even for the relatively simple case of linear 
viscoelastic springs. However, the general features of the expected response can 
be illustrated schematically, as shown in Fig. 2. 

Both the instantaneous response and the long-term response reduce to that 
for linear elastic springs, with the spring constant k(0) or k(oo) holding 
uniformly for all locations x along the crack. For intermediate values of t, 
however, one must first determine 8 (x; t), and hence ayy (x, y = 0; t) from 
(3.2), before one can construct the (generally non-linear) a/8 curve illustrated in 
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Fig. 2, and hence evaluate (3.1b), which corresponds in effect to the 
complementary energy for that instantaneous o78 relation prevailing at time t. 
This complication is a result of the history dependence of deformation for 
viscoelastic behaviour; similar (or worse) complications can therefore be 
expected for more realistic prescriptions for the degradation in bridging 
efficiency. 

Nevertheless, Fig. 2 suggests a useful approximation: the actual non-linear 
a/8 curve can be approximated by a linear relation shown as a dashed line in 
Fig. 2. This corresponds physically to assuming that the bridging can be 
modelled by linear springs with a uniform value of spring stiffness kx (t) 
prevailing for all stations x along the crack, where k«, (t) denotes the degraded 
stiffness which pertains for x -» -oo at time t, ie. 

k00(t) = 2aa/{E'8(x^-oo;t)} (3-6) 

This approximation leads to the following estimate for K(t), by adapting the 
known result for linear springs (Rose, 1987), 

K(t) = aa/JkjÖ (3.7) 

Spring Stretch 5 
Figure 2. Schematic stress-stretch curve at a given time t for a semi-infinite 
crack reinforced by linear viscoelastic springs. The dashed straight line leads to 
a useful, conservative, estimate for K(i). 

A physical interpretation of this approximation suggests that the dashed line in 
Fig. 2 should always lie below the actual o78 curve for time t, and therefore that 
(3.7) should represent an upper bound for K(t). This is particularly useful from 
a practical viewpoint, because (3.7) would then provide a conservative estimate 
for the actual stress intensity factor for a finite-length fully bridged crack as 
well. This estimate is similar in spirit to that already proposed by Baker (1993) 
and Cox and Rose (1994) for fatigue degradation of bonded repairs. 
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4. Steady-state crack growth 

The term "steady state" implies a constant crack-growth rate 4 and translational 
invariance, so that relative to coordinate axes x, y attached to the moving crack 
tip, the stress and displacement fields depend only on these spatial coordinates 
x, y, and not on the time t. Thus, a partial derivative with respect to t in a fixed 
frame of reference can be replaced by a spatial derivative, 

a/at->-4 a/ax (4.i) 

There would appear to be only two configurations for which a strict steady-state 
can prevail: 

(i)        a fully bridged semi-infinite crack, in a uniform remote stress field; 

(ii) a semi-infinite crack with near-tip bridging over a fixed, finite-length 
zone, under the standard conditions for a small-scale bridging 
approximation. 

The latter case has been studied by Pickthall and Rose (1996). In the former 
case, it is essential that the traction law should exhibit a finite compliance for t 
—> oo, to ensure that the crack opening for x ->• -oo remains finite. This 
requirement is not satisfied by the traction law proposed by Begley et al. 
(1995a) in the context of fibre bridging, so that a strict steady-state cannot be 
expected for that case, as noted in the more recent work of Begley et al. 
(1995b). 

The stress intensity factor can again be derived by using the J-integral 
approach of Marshall and Cox (1988), with the integration contour shown in 
Fig. 1, but x, y now denoting a coordinate system attached to the moving crack 
tip. It is assumed here that 4 is small compared with the elastic wave speeds, 
so that a quasi-static analysis is again appropriate. Thus, instead of (3.1) we 
now obtain 

K2(4)      T ,.-. 
—^T = JtiP (ä) (4.2a) 

= 0,8.(4)- I" Oyy (x, y = 0 ; ä)ö5/ax(x; ä)dx .     (4.2b) 
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Spring Stretch 8 
Figure 3. Schematic stress-stretch curves for steady-state growth of a fully 
bridged semi-infinite crack at various growth rates ä for bridging by linear 
viscoelastic springs with a single relaxation time T 

Similar difficulties arise in evaluating the integral in (4.2b) to those discussed 
above in Section 3. The general features of the response can be understood with 
reference to Fig. 3. With any given growth rate a one can associate a definite 
CT/8 curve, as indicated in Fig. 3, and the right hand side of (4.2b) would 
correspond to the complementary energy for the hypothetical springs defined by 
that a/5 relation. However, that relation is not prescribed: it must be derived by 
first solving an integral equation for 5 (x; 4) and then deriving the 
corresponding stress (at position x along the crack) from the prescribed, history 
dependent, constitutive equation. 

For the case of linear viscoelastic springs defined by (3.2), the appropriate 
relation is 

a     &y = 0; 4)=  -^   fk[ß-Ti)/ä] —ft; 4)dri, (4.3) 
yy 2    * d£ 

where \ = -x. The governing integral equation for the dislocation density D (£) 
is 

—    f T^- dri +   f k[ß-Ti) / a ]fl(Tl)dn = 2c   / E' .       (4.4) 
2TI *    S-Ti * a 

This equation should be amenable to solution by the Wiener-Hopf technique, 
but the second integral in (4.4) represents a significant complication relative to 
the case of linear elastic springs. Work is currently in progress in an attempt to 
solve this equation for viscoelastic springs with a single relaxation time T, 
specified by 
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-t/T\      i.     ,  i.     -t/T k(t) = k0 - k, (1 - e""1) = k«, + k, eyi, (4.5) 

where k0 and kM denote respectively the instantaneous and the fully relaxed 
spring stiffness. The solution will then depend only on the non-dimensional 
parameters ko äT and k0/kw . For the limiting cases k0 äT « 1 or » 1, the 
solution can be expected to approach the slow or fast elastic response, 
respectively, as indicated in Fig. 3, but this asymptotic behaviour may not be 
uniform in x. It is clear from Fig. 3 that assuming a fully relaxed spring 
stiffness for all locations x will necessarily lead to an upper bound for K. This 
provides a conservative estimate for K, but the accuracy could be expected to be 
much poorer than for the dashed line in Fig. 2. 

5. Conclusion 

The influence of a progressive decay in crack-bridging efficiency has been 
discussed, with particular attention to two configurations involving a fully 
bridged semi-infinite crack. The case of bridging by linear viscoelastic springs 
illustrates in the simplest mathematical form some of the key features and 
practical difficulties which can be expected for more realistic (and 
mathematically more complicated) traction laws. Even for that special case, 
however, there remain significant challenges in deriving exact analytical results, 
or efficient numerical procedures, which require further detailed study. 
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Abstract 

The tensile strength of an aligned-fiber ceramic composite containing an initial, through- 
the-fibers flaw is examined, and comparative studies are made of the effects of long fibers 
having deterministic tensile strengths, long fibers with stochastic strengths, and short 
fibers. Long-fiber reinforcement by perfectly uniform fibers having deterministic strengths 
has already been investigated extensively, and early studies of the effects of statistical 
variations in fiber strength associated with random fiber flaws (Thouless and Evans, 1988; 
Sutcu, 1989) indicated that long fibers having stochastic strengths could, paradoxically, 
provide significantly higher composite notch strengths than comparable fibers having 
uniform tensile strengths. The essential reason for this is that the randomly flawed fibers 
can suffer breaks in the interior of the composite, and then continue to carry load as well 
as enhance energy dissipation as they are pulled out of the matrix. A similar pullout 
effect can be induced by use of sufficiently short fibers, even when their strength is 
deterministic (Budiansky and Cui, 1995). 

The influences on composite strength of these various fiber types are revisited and 
reviewed here. Particular attention is given to the question of "notch-sensitivity", which 
in the present context means the effect of the length of a major crack-like flaw on the 
overall composite strength. 

1.  Introduction 

The configuration shown in Figure 1 illustrates a 2D model problem for the assessment 
of notch sensitivity. An infinite aligned-fiber composite containing a through-the-fibers 
flaw (or "notch") of length 2SQ is subjected to uniform tension a at infinity. The fibers 
of radius R have volume concentration cf and are held in the matrix by an interface friction 
of maximum magnitude x. We assume further a matrix fracture toughness Km=0; this 
simplifying assumption (Suo et al , 1993) introduces little error (Budiansky and Cui, 
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1994). Figure 1 shows long fibers, but a similar picture, and the same notation and 
assumptions will be used for aligned, but randomly located short fibers having uniform 
lengths. 

In the analysis of the strength of the 
notched composite, some additional 
simplifications will be made. We will 
assume that an isolated matrix crack 
aligned with the initial flaw will emanate 
from each flaw tip (Figure 1) when load is 
applied to the composite. In actuality, fiber 
composites suffer multiple, closely spaced 
matrix cracks, with a concentrated density 
of such cracks near the notch tips. Like 
crack-tip plasticity in metals, such 
localized matrix cracks tend to relieve fiber 
stress concentration at the flaw tips, and so 
ignoring them makes the calculations of Figure !• Flawed composite. 
the composite strength conservative. Finally, we will be using an idealized bridging 
model, wherein the forces applied to the composite by fibers that bridge the matrix crack 
will be modeled via distributed spring stresses applied to the matrix crack faces, rather 
than by distributed friction along the fibers in a boundary layer in the interior of the 
composite. This too tends to concentrate flaw-tip stresses unrealistically, leading to 
conservative strength estimates, as shown in the "large-scale sliding" study by Xia et al 
(1994). Nevertheless, comparisons of the relative effectiveness of various kind of fibers 
may remain approximately valid, and the simplified analyses can be expected to provide 
lower bounds to the strength of the composite in the presence of a notch. 

We will denote the strength of the composite by os, and let OQ be the strength of the 
unflawed (but matrix-cracked) composite. Then the knockdown factor GS/GQ is a measure 
of the notch sensitivity. 

2.  Long Fibers,  Deterministic Fiber  Strength 

The pertinent results found by Budiansky and 
Cui (1994) will be summarized. Figure 2 
illustrates the bridging model in which the 
crack-face fiber stresses Of were smeared out 
into bridging stresses p=CfOf related by a 
bridging law to the crack-face opening 
displacement 8. We define the characteristic 
length 

L = RS/x (1) 
where S is the fiber strength, and introduce 
the parameter 

MHHmtHHHt 

mm 
fTlTTTTTTTTTTTTTl 

Figure 2.  Crack-face spring bridging. 
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A(S) = 
2cmEm j 

(2) 

where Ef, Em, and E are the fiber, matrix, and composite moduli, and Cm=l-Cf is the 
matrix volume fraction. In terms of the non-dimensional crack opening defined by 

w = 8A2(8/L) 

the bridging relation 

f = -P- = Vw" 
cfS 

was used.   (See Xia et al (1994) and Budiansky et al (1995) for discussions of the 
provenance and limitations of this bridging law.)    The criterion for fiber failure is f=l, 
and when this occurs at the ends of the original flaw, failure of the composite ensues. 

Because Km=0, the matrix cracks will extend out to infinity. With £=x/ao 

(3) 

(4) 

«©"»-(TI? f(t)log 
t2-%2 

t2-l 
at. (5) 

governs the distribution f(£) of the non-dimensional bridging stress. Here, via (4), w=f2, 
and with v equal to the Poisson's ratio of the composite, the parameter co is defined as 

(0 
= (l-v)cfEfE = 0(1)j 

9 Ar2 F2 
'"'11111! 

(6) 

Here A=0(1) is a parameter that accounts for the orthotropy of the composite (Budiansky 
and Cui, 1994). Overall equilibrium requires the imposition of the auxiliary condition 

nf($)-f(~)]d$ = f<~). (7) 

With ao=CfS, the results for the strength ratio OS/CTO VS. ©ao/L shown in Figure 3 were 
found by setting f(l)=w(l)=l, solving (5) and (7) for f(£), and identifying cs/Oo with f(°o). 

b 

2 
«a0/L 

Figure 3.   Notch sensitivity, deterministic fiber strength. 
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(We omit the details of the numerical solution.) 
For an SiC/CAS composite, the nominal values R=7 urn, S=2 GPa, and t=20 MPa 

give the characteristic length L=700 ^m. For Cf=.4, Ep200 GPa, and Em=100 GPa, we 
have E = Cf Ef + cmEm= 140 GPa, and the values v=.25 and A=.97 (Budiansky and Cui, 
1994) give © ~ 1.5. The consequent theoretical notch sensitivity as a function of the 
half-crack-size ao in millimeters, illustrated in Figure 4, is alarming; but in fact, the 
experiments by Cady et al (1995) on a notched, 0/90 SiC/CAS composite laminate 
exhibited essentially no notch sensitivity. 

.6 
b 

.2 

0 .5 1 1.5 2 
a0    (mm) 

Figure 4.    Notch sensitivity, deterministic fibers; example (SiC/CAS). 

3.     Long Fibers, Stochastic Fiber Strengths 

We turn now to consideration of the effect on notch sensitivity of fibers having strengths 
governed by a Weibull strength distribution. Suppose that the occurrence of inherent 
flaws in a long fiber obeys a Poisson distribution specified by the probability N[S]dx that 
the tensile strength of any element dx along the fiber is less than S. The Weibull 
assumption is that N[S] is proportional to some power Sm. A useful formulation of this 
law is 

wn-I r(l + l/m)S 
(8) 

where SL is the average strength of fibers of length L, and r is the gamma function. We 
illustrate the significance of the size of the Weibull parameter m in Figure 5, which 
shows the probability-density function q(S/SiJ for the strength ratio S/SL of fibers of 
length L. The values of m shown more-or-less cover the range that has been reported for 
various fibers. For m=°° the fiber strength is deterministic, with S=SL; m's less than 2 
are unlikely. The validity of Eq. (8) would imply that LS™ is invariant, and that the 
curves in Figure 5 are independent of L. (But experiments by Zok et al (1993) indicate 
that a simple Weibull distribution does not really account adequately for the presence of 
the distinct fiber flaw populations associated with pristine fibers and those introduced 
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q(S/SL) 

during composite processing.) 
The effective single-matrix-crack bridging law associated with fibers having Weibull 

strength distributions was studied by Thouless and Evans (1989), and has been 

4 
3.5 

3 
2.5 

2 
1.5 

1 

0.5 

0 
0.25    0.5   0.75     1      1.25    1.5   1.75     2 

s/sL 
Figure 5.   Fiber-strength probability densities for several Weibull exponents. 

rederived, with corrections, by Budiansky and Amazigo (to be published). We define the 
new characteristic length L and the stress SL by stipulating that the relation 

L = SLR/x (9) 
be satisfied by fibers of length L and their average strength SL; and we keep the definition 
(2) for the parameter A, with S replaced by SL- Then, with w still defined by Eq. (3), the 
bridging law (4) generalizes into the form 

n/w _...r -im+1 

m=1 0   / 

1 

4 
2. 

-£- = f(w;m,A) = Vw"e-a"-v 

CfSL 
+ ,-ams" s-- 

w 

4Ä5 
ds   (10) 

4A2 

for w<16A4; for w>16A4 the integral is dropped.  Here ctm is just the constant 

_[r(l + l/m)]m 

a m m + 1 (ID 

(If the average strength Sg is known for a standard gage length Lg of fibers, then L and SL 
may be found from the formulas 

_L_ 

U 

S„R 

xL sy 

m+1 S„R 

vTLg; 

m+1 
(12) 

that follow from Eq. (9) and the connection LSL = LgS™.) 
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Figure 6.    Bridging law, stochastic fiber strength; m=4, A(SL)=10. 

The bridging law (9) can be evaluated by numerical integration, and an example is 
shown in Figure 6, for m=4 and A(Si>10. Typically, in contrast to the deterministic 
law (4), which confines w to the narrow range (0,1), the curve for stochastic fibers is 
considerably more broad in its early stage, and then transitions to a very long, low, 
gradually falling portion. 

The integral equation (5) and the auxiliary relation (7) continue to apply to the model 
problem, with w given in terms of f=p/(CfSL) by numerical inversion of the bridging 
relation. But the strength as is now set by the maximum value achieved by the applied 
stress a during opening of the matrix crack. The normalizing value ao for the strength of 
the unnotched composite is identified with the peak value of p (Figure 6) in the bridging 
law. The maximum values of p/(CfSL) are nearly independent of A, and decrease from 
unity only a little as m decreases. (For m=2 and A=10, [p/(CfSL>]max=-87.) 
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Figure 7.      Notch sensitivity, stochastic fiber strengths; A(SL)=10 

We show in Figure 7 the non-dimensional results found for notch sensitivity, for 
m=2, 4, 10, and the deterministic case m=°° given in the previous section. For each m, 
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we used A(SL)=10.    (For m=°° the strength does not depend on A, and additional 
numerical calculations have indicated that the notch strength is not very sensitive to A for 
the small notch sizes that are of interest in the study of notch sensitivity. For each finite 
m, the strength does becomes nearly proportional to A for very long notches.) 

The curves of Figure 7 give a clear indication of the diminished notch sensitivity 
associated with decreasing values of the Weibull exponent. Note, however, that the 
characteristic length L in the non-dimensional abscissa depends on m, as does the 
normalizing value Oo for the unnotched composite. An explicit presentation of notch 
sensitivity estimates for SiC/CAS composites is shown in Figure 8, on the following 
basis. We suppose that for a standard gage length of 25.4 mm (1 inch), the measured 
average fiber strength Sg is 2 GPa for each m. With the same choices R=7 urn and x=20 
GPa made earlier for deterministic fibers, we used Eqs. (11) and (12) to calculate the 
characteristic lengths L and associated strengths SL shown in Table I for the several m's. 
Then, with co=1.5 (for the choices Cf=.4, Ef=200 GPa, and Em=100 GPa used earlier) the 
results in Figure 7 produced the curves of 
Figure 8. (This introduces a small error, Table I 
because A=10 was used for each of the Stochastic fiber parameters 
curves in Figure 7, and the actual values 
of A(SL) for each m, also given in Table 
I, are a little different.) 

The trends exhibited in Figure 8 
confirm the reduced notch sensitivity to 
be expected from composites containing 
fibers having a statistical spread of 
breaking strengths. But some notch sensitivity survives in the millimeter-size notch 
range even for m=2, and so stochastics alone would not account for the Cady et al (1995) 
notch-insensitivity observations in SiC/CAS. Perhaps a combination of stochastic fiber 
strengths, multiple matrix cracking, and the Xia et al (1994) large-scale sliding effect will 
ultimately be needed to understand their notch-insensitivity data. 

m L(mm) SL(GPa) A(SL) 
2 2.3 6.6 6.4 
4 1.4 4.1 8.2 
10 1.0 2.8 9.9 
oo .7 2.0 11.7 

0 .5 1 1.5 2 
a0    (mm) 

Figure 8.    Notch sensitivity, stochastic fiber strengths; example (SiC/CAS). 
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There are several ways to rationalize the decreased notch sensitivity provided by 
stochastic fiber strengths. When weaker fibers break in the interior of the matrix they 
continue to inhibit crack opening as they slide out, allowing the fibers that are stronger 
than average to sustain their bridging constraint. The "softer" bridging law vis-a-vis the 
deterministic one tends to reduce the concentration of fiber stress near the notch. And 
from a related energy viewpoint, there is more dissipation associated with the pullout of 
broken fibers (Kelly and Macmillan 1985). So short fibers that would always pull out 
before they break should lead to less notch sensitivity. This was explored by Budiansky 
and Cui (1995), and is reviewed in the next section. 

4.      Short Fibers 

a 
»4iU4»U4H wvxin 

T TTTT 

u m 
TmnTmhrj 

Figure 9. Notched short-fiber composite. 

We illustrate in Figure 9 randomly arrayed, 
aligned short fibers, or whiskers, in the 
composite containing an unbridged notch, 
with matrix cracks emanating from the notch 
tips. (Sophisticated, detailed analyses of 
matrix-crack-bridging by randomly inclined 
short fibers have been conducted by Li and his 
associates (e.g. Li et al, 1991), mostly in the 
context of reinforced cementitious materials. 
The emphasis by Budiansky and Cui was on 
the notch-strength implications of aligned 
fibers, and involved  much more primitive 
modeling.) Reverting to the assumption of a deterministic fiber strength S suggests the 
concept of an "optimal" fiber length L=RS/T, as the largest length consistent with 
pullout before fiber fracture, regardless of a bridging fiber location with respect to the 
matrix crack.  Retreating a bit from the modeling of long fibers, we assume that the 
fibers are rigid. If we let e<L/2 denote the length of a particular bridging-fiber segment 
that is being pulled out, «hen its crack-face fiber stress Of is related to the crack opening 
8 by Of(8;e)=2T(e-8)/R for 8<e, and vanishes for 8>e. Averaging CTf over all e's between 
zero and L/2, and writing p=Cf(af)aVe gives the optimal-fiber bridging law 

J2p/(cfS) = [l-28/L]2     (0<8<L/2) (13) 

[ =0 (8>L/2)     . 
The maximum bridging stress is oo=CfS/2, and this is also the reference composite 
strength for vanishing notch size. Now the matrix crack does not have to extend to 
infinity, even though the matrix toughness Km is assumed to vanish; the finite value of 
bridging stress for 8=0+ makes it possible for K to vanish at the tip of a matrix crack of 
finite length (b - ao).  In contrast to Eq. (5), the integral equation 

l-Vf(!)=2efii(ao/L) 
<*o 71 

f(t)log 

with ß=b/ao, governs f=p/ao in the range 1 < £ < ß 

AE 

Here the parameter r\ is 

dt (14) 

(15) 
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and ef=S/Ef is the fiber fracture strain. To meet the requirement of zero stress intensity 
factor at the matrix crack tip, the scalar condition 

fß   «§*§- (16) 
CTQ    n Vß 2    c2 

must also be satisfied. For specified values of the notch-size parameter efn(ao/L), the 
strength ratio as/ao (Figure 10) was determined as the peak value of a/ao, for increasing 
values of ß, in the numerical solution of (15) and (16) for f(£) and a/ao- 

.8 

b 

0 12 3 4 

77e,aD/L 

Figure 10.     Notch sensitivity, optimal short fibers. 

Actually, the abscissa in Figure 10 does not depend on S, but the form shown makes 
it easy to see that "optimal" short fibers should generally give less notch sensitivity than 
that given in Figure 3 for deterministic long fibers. The curves look similar, the r| and co 
parameters are both of order one, and the L parameters for long and short fibers should 
have comparable sizes. But the presence in the short-fiber abscissa of the factor epS/Ef, 
which is around .01, means that for a given notch size ao, the knockdown factor is much 
less for short fibers. But we should remember that the normalizing strength parameter ao 
is only CfS/2 in the short-fiber case, instead of CfS for long fibers; however, short fibers 
in whisker form tend to have higher nominal strengths. 

We will now finish up by showing an example for a hypothetical CAS matrix 
containing SiC whiskers. We presume an SiC whisker strength S=4 GPa, whisker radius 
R=3 um, and keep x=20 MPa as the interface friction; this gives an optimal short-fiber 
length L=600 um. The value Ef=4 GPa for the whisker modulus gives ef=.01, and with 
Cf=.4, Em=100 GPa, we get E=220 GPa, and A=.88 (Budiansky and Cui, 1994) for 
v=.25. These numbers give T|=1.55, and then Figure 10 produces the short-fiber example 
in Figure 11, shown together with the curves reproduced from Figure 8 for stochastic and 
deterministic long fibers. Although various properties of the short and long fibers in this 
comparison differ, they reflect reasonable estimates for whiskers and fabricated fibers. 

In this example, the optimal short fibers provide very comforting notch 
insensitivity, performing much better than even stochastic long fibers with m=2. 
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Figure 11.   Notch sensitivity examples (SiC/CAS); short fibers, stochastic long fibers. 
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Abstract 

Asymptotic analysis is developed for the problem of a plane strain crack lying on the 
interface of an elastic-plastic (or elastic-creeping) material and a rigid substrate. The 
nonlinear plastic (creep) response is taken to follow a power-law hardening relation. In 
contrast to other recent analyses, we have found asymptotic solutions for a continuous 
variation of crack-tip mode-mix that agree well with full-field solutions. These crack- 
tip displacements and stresses are variable-separable in polar coordinates r and 0 and 
exhibit a singularity in stress of a <* r-1"-"^ as r->0, where n is the hardening 
exponent. The angular variations of these asymptotic fields have been calculated using 
a finite difference scheme. Unlike the full range of mixed-mode solutions that exist for 
a homogeneous crack in a power-law hardening material, there appears to be a narrow 
range around the pure tensile mode for which solutions do not exist. That latter range 
increases somewhat as the hardening exponent n increases. 

1. Introduction 

The performance of structural materials is often determined by the response of 
interfaces between structural components, such as cracking of grain boundaries in 
polycrystals and fiber/matrix interfaces in composite materials. This paper addresses 
specifically the mechanics aspect of interfacial fracture. Rice (1988) and Hutchinson 
and Suo (1992) have provided an extensive review of work dating back to the late 
1950's on the subject of fracture along interfaces between dissimilar linearly elastic 
materials. The crack tip fields of a linear system are found to be oscillatory, except in 
general when both isotropic materials are incompressible with Poisson's ratio v = 1 / 2. 
In contrast, recent investigations have been inconclusive regarding the structure of the 
crack tip fields for stationary crack problems at nonlinear bimaterial interfaces. 

In recent analyses of interfacial cracks lying between a power-law hardening 
material and a rigid substrate, Wang (1990), Champion and Atkinson (1991) and 
Sharma and Aravas (1993) attempted to find crack-tip solutions that are separable in 
polar coordinates (r,0) and exhibit the singularity ff = r"("+1) as r->0. This stress 
singularity in the leading order term of the asymptotic expansion can be deduced from 
/-integral analysis and, consequently, is the same as the Hutchinson-Rice-Rosengren 
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Figure 1. Schematic of the crack tip region. 

solutions for cracks in homogeneous materials (Hutchinson, 1968; Rice and Rosengren, 
1968). However, as opposed to the stationary homogeneous crack problem which 
yields mixed-mode solutions varying continuously between pure mode 1 and 2 (Shih, 
1974), only a single mode-mix was obtained for each hardening exponent n, in spite of 
the different numerical schemes used in Wang (1990), Champion and Atkinson (1991) 
and Sharma and Aravas (1993). The interfacial crack solutions presented in those 
papers are near mode 1, i.e., tensile, with some (positive) shear. 

Several full-field analyses also exist in the literature for elastic/plastic interface 
cracks under small-scale yielding conditions. Shih and Asaro (1988) and Sharma and 
Aravas (1993) considered an interfacial crack between a power-law material with 
v = 0.3 and a rigid substrate under applied mode I and mixed-mode loading conditions. 
In a separate study, Shih and Asaro (1989) investigated an interfacial crack between a 
power-law material with v = 0.3 and an elastic substrate under mixed-mode loading. 
Generally, the crack-tip fields from these finite element analyses do not agree with the 
solutions obtained from the asymptotic analysis discussed previously. However, some 
components of the near-tip stresses, particularly the shear stresses, appear to attain the 
singularity a °= r~x,{-nJrV>. 

In this paper, we analyze the interfacial crack problem, with the emphasis on the 
spectrum of separable mixed-mode asymptotic solutions. The stationary interfacial 
crack configuration considered, as depicted in Fig. 1, is a semi-infinite crack lying 
between a power-law hardening material and a rigid substrate and loaded under plane 
strain conditions. The deformable medium occupies the region 0 < 6 < K, and the crack 
face is taken to be open and, therefore, traction free. Consequently, the boundary 
conditions satisfied by the asymptotic fields are: 

ur{r,0) = ue(r,0) = 0 

ore{r,n) = aee(r,n) = Q 

We will make use of the mode-mix parameter, M, defined as (Shih, 1974) 

M = — tan 
n 

lim 
r->0 

fffletoO) 
cr.e(r,0) 

(2) 
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as a measure of the relative strengths of tensile to shear stress on the interface near the 
crack tip. Mode-mix parameter M is +1/-1 for mode 1 stressing conditions with 
tensile/compressive agg stress ahead of the crack, and 0 for mode 2 conditions. 

The linear elastic, incompressible, asymptotic solution is presented in Section 2 for 
an interfacial crack configuration in Fig. 1. Section 3 develops the separable mixed- 
mode asymptotic solutions for interfacial cracks in power-law hardening materials. 
Angular variations of the mixed-mode displacement and stress fields are solved using 
finite difference method and a singular value decomposition technique. In a separate 
paper by Fang and Bassani (1995a), these asymptotic solutions are shown to be in good 
agreement with small-scale creep finite element calculations, with solutions obtained by 
Shih and Asaro (1988, 1989) and Sharma and Aravas (1993), and with slip-line 
solutions in the non-hardening limit. 

2. Linear Elastic Asymptotic Solution 

In general, singular stress fields at the tip of an interfacial crack with boundary 
conditions (1) and a linear elastic upper half region are non-variables separable in (r, 0). 
When the material is incompressible, however, the dominant term in the asymptotic 
solution reduces to a solution separable in (r,0) with a stress singularity of the form 
cr°= r ~1/2. Then, the leading order displacement and stress fields are: 

Hr(r,0)]   J_ rr 
ue(r,e)\   AG\2K 

KA 

0 30 
cos—cos— 

2 2 
„ .   0     .30 

-3 sin — + sin — 
2 2. 

+ K in 

. 0   „ . 30 
-sin — + 3sin — 

2 2 
-,      0   0      30 

-3cos — + 3cos — 
2 2. 

arB(r,B)' 

arr{r,6) 

cree{r,e) 

1 
A42nr 

K r 

f   .   0     .   30 1 
sin —+ sin— 

2 2 
e      0 30 
5cos cos — 

2 2 
„      0 30 3 cos— + cos— 

2 2 

+ K ir 

0   .     30 1 
cos —+ 3cos — 

2 2 
. .   0    , .   30 -5sin — + 3sin — 

2 2 
, .   0   , •   30 -3sin 3sin — 

2 2 J 

(3) 

where G is the shear modulus.   This asymptotic solution (3) involves two arbitrary 
constants, the stress intensity factors K, and K„. As in the case of linear elastic 
fracture of homogeneous materials, K, and K„ have the conventional interpretations 
as mode I and II stress intensity factors and are established by the far field conditions 
such as applied loading and geometry of the cracked material. From (2) and (3), the 
elastic mode-mix parameter, Me, is then Me =(2/7r)tan~ (K[/Kn). Me takes on 
values between ±1 for mode I and 0 for mode II. 

3. Asymptotic Solutions of Power-Law Hardening Materials 

An asymptotic analysis of the interfacial crack depicted in Fig. 1 is presented for a 
deformable medium that exhibits power-law hardening behavior characterized by J2- 
deformation theory in the region 0 < 0 < n, i.e., 
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2£°U 
Nll-l 

^0 
(4) 

where By denotes the total strain in the case of /2 -deformation theory or the strain rate 
in steady state creep, stj denotes the deviatoric stress components, ae = (j^j sij) is 

the von Mises effective stress, and n, a0, e0 are material constants. 
If we seek variable-separable solutions in (r,0) and use the /-integral argument as 

in the homogeneous stationary crack problem considered by Hutchinson (1968) and 
Rice and Rosengren (1968), then the power of singularity in stress is determined to be 
a oc r-i /("+1). The dominant terms in the asymptotic expansion can be expressed as: 

ur(r,9) 

ug(r,e) 

arg(r,e)' f 
<Tn(r,0) ■ = a0 

oee{r,e) \ (TQe0l{n,Mp) 

ür{6;n,Mp)\ 

üg(6;n,Mp)j 

öre(9;n,Mp) 

ön(ß;n,Mp) 

öee{e;n,Mp) 

(5) 

where the angular functions denoted with a tilde are normalized so that the maximum 
over 9 of de is unity, J denotes the /-integral, l(n, Mp) is a number of order unity and 
has the same definition as in Hutchinson (1968) and Rice and Rosengren (1968) except 
the lower limit of integration is zero for the interface crack problem, and the plastic 
mode-mix Mp is defined by (2). Using (5) together with equilibrium equations and 
stress-strain relations, the governing equations of the leading order of asymptotic 
expansion are simplified to give (Sharma and Aravas, 1993): 

da re 
d6 

döee 

+ (s + l)ärr-ögg = 0 

de   f(s + 2)örg=0 

-^- + snüg-3ördöe
n-l=0 

d0 

(6) 

3,~ 
(sn + l)5r - - (örr - ögg )öe

n    = 0 B-l  _ I 

where s = -1 l(n +1), the stress exponent, is known from path-independence of the /- 
integral. This forms a set of four first order nonlinear ordinary differential equations 
plus one nonlinear algebraic equation. In addition, boundary conditions (1) become: 
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ür(0;n,M ) = üJ0;n,M ) = 0 
v PI        \ PI (7) 

dr6 [n;n,Mp) = öee [n\ n,Mp) = 0 

Equations (6) and (7) constitute a nonlinear eigen-function problem with s as the 
eigenvalue and 5,(0;«, Mp) and ay(9;n,Mp) the corresponding eigenfunctions. 

3.1. NUMERICAL ANALYSIS 

The boundary value problem defined in (6) and (7) is solved numerically for mixed- 
mode angular distributions affin, Mp) and äy(6;n,M ) using a nonlinear finite 
difference scheme and a Newton-Raphson iteration. One difficulty in obtaining mixed- 
mode solutions numerically for the interfacial crack problem is enforcing of the mode- 
mix condition: Mp ={217c)tan~l[öeg(6 = 0)/örö(6 = 0)] in finite differences with 
Newton-Raphson iterations. We found that careful introduction of the mode-mix 
condition is necessary for generating solutions other than the ones found by Wang 
(1990), Champion and Atkinson (1991) and Sharma and Aravas (1993), i.e., the mode- 
mix condition is an extra constraint that needs to be enforced. In this study, the mode- 
mix condition is added to the linear Newton-Raphson equations, therefore resulting in 
an over determined system, i.e. more equations than unknowns. Numerical solutions to 
this over determined system of equations are then obtained by using a singular value 
decomposition (SVD) technique (Press et al., 1988). 

Specifically, the system of over determined, linearized Newton-Raphson equations 
is solved using SVD which converges to a solution that is the best approximation in the 
least-squares sense. Therefore, care must be taken in monitoring the residuals from the 
full nonlinear discretized finite difference equations during the numerical procedure. As 
a comparison, we have applied the same technique to obtain the known mixed-mode 
solutions with a «= r-l/(-n+V for homogeneous cracks. Mixed-mode solutions obtained 
using this method are in excellent agreement with the results reported in Shih (1974) 
and Symington, Shih and Ortiz (1988). However, error analysis for a hardening 
exponent of n = 5 shows that relative errors from mixed-mode calculations are of the 
order O(K)"6) compared to 0(1O"12) for pure mode 1 and 2 calculations without using 
SVD. Relative error in the numerical procedure is defined as Jift/ N with maximum 
value of äe(9) = 1, where ft are the residuals of nonlinear finite difference equations 
and N is the number of degrees of freedom. The larger errors from mixed-mode 
calculations are believed to be the result of the additional numerical approximation, 
namely SVD, utilized in the solution procedure as well as the inherent difficulty 
associated with obtaining solutions to these mixed-mode problems. 

Mixed-mode solutions to (6) and (7) with SVD for materials with n = 5 have 
relative errors of the order O(10~5) compared to O(10-12) for the solution Mp = 0.937 
reported in Wang (1990), Champion and Atkinson (1991) and Sharma and Aravas 
(1993), which converged without SVD. The accuracy of the procedures with and 
without SVD technique for the interface crack is consistent with that for the crack in a 
homogeneous material. Thus, it is believed the mixed-mode numerical solutions 
presented in this paper for interfacial cracks are good approximations of the exact 
solutions.   Several of these solutions are shown in Figs. 2 and 3 for n = 5 and 10, 
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TABLE 1. Selected values of I(n, Mp ) for interfacial cracks with n = 5 and 10. 

Mp n = 5 n = 10 

0.937 2.789 — 

0.915 — 2.650 

0.600 0.847 0.517 

-0.500 0.372 0.140 

-0.700 0.899 0.467 

respectively, for both positive and negative values of Mp. The solutions obtained by 
Wang (1990), Champion and Atkinson (1991) and Sharma and Aravas (1993) 
correspond to M =0.937 for n = 5 and Mp =0.915 for n = 10. Displacements and 
stresses in both figures are normalized such that the maximum value of effective stress 
de is unity. In addition, Table 1 lists values of I[n,Mp) calculated for solutions in 
Figs. 2 and 3. 

The numerical solutions presented in this section show that these separable 
asymptotic solutions with a « /--' /<n+1) for an elastic-plastic or elastic-creep interface 
crack admit a continuous variation of the mode-mix value at the crack tip. It should be 
noted that, however, the range of mode-mix existing at the crack tip changes with the 
hardening exponent n. It has been found that the upper/lower limit of Mp values 
decreases/increases as the hardening exponent n of the material increases. In spite of 
numerous attempts, there is no solution found to converge with values of Mp 

approaching +1. For instance, the upper limits of mode-mix parameter decrease from 
the value of +1 for n = 1 to 0.98 for n = 5, to 0.95 for n = 10, approximately. On the 
other hand, the lower limits of mode-mix at the crack tip increases from -1 for n = 1, to 
-0.98 for n = 5, to -0.84 for n = 10. This finding is consistent with the extreme case of 
perfect plasticity (n-»°°) where slip-line fields within the range of 
-0.7638<M~{n-*<>°)<0.8897 are found to exist near the crack tip (Fang and 
Bassani, 1995a). Certain admissible stress discontinuities in these slip-line solutions 
also provide insight into why mixed-mode solutions for finite n are difficult to obtain, 
particularly using shooting methods. 

4. Full-Field Solutions and Discussion 

Fang and Bassani (1995a) have considered full-field mixed-mode problems under 
small-scale creep conditions to verify interfacial crack solutions developed here. Finite 
element solutions for various mixed-mode loading conditions display crack tip fields 
that agree well with predicted asymptotics. Within the region surrounding the crack tip 
and dominated by the leading order asymptotic solutions, stress states are found both to 
have spatial and temporal behavior associated the short-time similarity solution of 
Riedel and Rice (1980) and Bassani and McClintock (1981), i.e. o~(K2lrt)>«»+») as 
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M 

Figure 4. Crack tip mode-mix Mp vs. applied mode-mix M, for small-scale creep. 

r -> 0 for small time t. The temporal behavior associated with the similarity solution 
is another verification for the existence of these variable-separable fields. Furthermore, 
from the small-scale creep finite element analysis, the relationship between crack tip 
mode-mix and applied elastic loading can be found and is shown in Fig. 4. 

In summary, the asymptotic analysis of the crack tip fields near an interface crack 
between power-law hardening materials and a rigid substrate presented in this paper 
demonstrates the existence of a continuous spectrum of mixed-mode variable-separable 
solutions. A scheme combining both finite difference and singular value decomposition 
has proven effective, and possibly the best scheme utilized to date, for determining 
mixed-mode variable-separable solutions for both homogeneous as well as interfacial 
crack problems. The same procedure has been utilized to solve for mixed-mode crack- 
tip fields for a propagating crack (Fang and Bassani, 1995b). 

The solutions presented in this paper admit a nearly full range of mode-mix values 
at the crack tip with nearly pure tensile modes inadmissible, at least in terms of variable- 
separable solutions. This latter finding is consistent with the perfect plasticity limit 
(n -» °°) reported in Fang and Bassani (1995a). Finally we note that for any solution 
5,(0;«,Mp) and öy(ß;n,M ) to homogeneous system (6) with (1), -1 times that 
solution also satisfies (1) ana (6). The negative Mp asymptotic fields in Figs. 2 and 3 
are solutions where Gee > 0 on 0 = 0 and uB = -u < 0 on 0 = JC , i.e. an open crack 
solution. Nevertheless, from small-scale-creep solutions we found that for pure mode II 
loading with positive shear (Me =0) and for small positive values of Me (positive 
shear with some tensile loading) the crack tip solutions have Mp negative with aee < 0 
and ue > 0 on 0 = 0 as r -» 0. We also found asymptotic solutions with Mp slightly 
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negative, e.g. ar6 > 0 and ae9 < 0 on 6 = 0, that correspond to an open crack, i.e. 
ue=-u < 0 on 0 = %; this situation cannot exist in the linear case which can be easily 
seen from (3). 
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1.   Introduction 

High strength can be achieved in ceramic fibers by manufacturing them as fine- 
grained polycrystals. Unfortunately, fine-grained fibers are prone to creep, 
because grain boundaries provide easy paths for diffusion. The matrix in many 
composites, whether formed by chemical vapor infiltration or by some other 
route, has a much coarser grain structure. Therefore, service life of CMCs 
reinforced by fine-grained fibers can be limited by fiber creep at temperatures 
where the matrix remains elastic. This paper is concerned with how fiber creep 
affects the failure by matrix cracking of a CMC under monotonic loading. 

Of primary interest is the passage to failure of 0/90° laminates, which offer 
at least a partial solution to the requirement of strength under transverse loads. 
The first damage observed in these materials under loads aligned with the 0° 
fibers is matrix cracking, which initiates in the 90° plies [1,2]. In many 
applications, failure may be considered to occur when these matrix cracks grow 
into through cracks by crossing the entire composite. 1) Stiffness critical 
applications. As long as matrix cracks remain comparable in size to the ply 
thickness, they cause a relatively minor reduction in the composite stiffness, 
because crack openings are limited by the crack length [3]. However, when 
matrix cracks traverse the entire composite, the separated pieces of matrix 
sustain average strains much lower than those in the fibers. The contribution of 
the matrix to the composite modulus is then severely degraded. 2) Hermeticity. 
As long as matrix cracks remain small and unconnected, they do not 
compromise the ability of the composite to act as a seal or liner, impermeable 
to gases. However, gas permeability obviously rises dramatically in the 
presence of through cracks. 3) Hostile environments. Matrix cracks admit 
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corrosive gases into the interior of the composite, where they attack fibers and 
the fiber/matrix interfaces. Composite strength and toughness can then fall 
away very quickly. Even small matrix cracks will introduce some corrosive 
gases. However, degradation may be limited to near-surface regions and 
relatively harmless until through cracks form, at which point failure will 
usually be imminent [4]. 

At room temperature, a lower bound exists to the stress at which cracks 
initiating in neighboring 90° plies link up to form through cracks. The bound 
obtains regardless of the presence of matrix flaws or flaws in clusters of fibers. 
The lower bound is a certain critical matrix cracking stress, ccrjt, to be 
introduced below. While ccrit varies to some extent with laminar dimensions 
and residual stresses, it is easily characterized for a single material and remains 
a fundamental, robust engineering parameter for failure at room temperature. 

At high temperatures where fibers creep, this useful simplicity is lost. The 
critical matrix cracking stress, which now takes a temperature dependent value 
(Tcrit(T), is still a bound for rate independent cracking, i.e., the immediate 
response to load, but subcritical crack growth mediated by fiber creep will 
eventually lead to through cracks at stresses much lower than acrit [5,6]. 
Lifetime becomes a function of temperature and stress, dictated by the rate of 
subcritical crack growth. This is the subject considered here. 

Fiber creep will also affect the residual ultimate strength of the composite. 
In applications where matrix cracking is not fatal per se, changes in residual 
strength must also be modeled. Some remarks will be made on the role of 
subcritical matrix crack growth on residual strength, but this issue will 
otherwise be left for future research. 

2.   Initial, Rate-Independent Matrix Cracking 

In 0/90° laminates loaded in the 0° fiber direction, the first manifestation of 
matrix cracking is tunneling cracks in the 90° plies [1,2]. The tunneling cracks 
initiate at intrinsic flaws in the 90° plies, which, being loaded transversely, tend 
to be weaker than the 0° plies. If any stable phase of matrix cracking occurs, it 
consists of the subsequent spreading of the cracks produced by tunneling into 
the adjacent 0° plies. The stable phase of growth occurs in the plane strain 
configuration indicated in Fig. la. Before discussing details of the initiation of 
matrix cracks by tunneling, it is helpful to examine the factors governing the 
stability and stress levels of the plane strain phase. 

Within the plane strain crack, the 90° ply acts effectively as a sharp notch 
or unbridged interval of width 2h90, while fiber bridging in the 0° plies acts in 
the intervals h90 < Ixil < a to shield the crack tip, where xx and the crack length 
a are defined in Fig. la. A useful model of the relation between the bridging 
tractions p and the crack opening displacement 2w is [7,8] 
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where ris the interfacial friction stress (a function of temperature);/is the fiber 
volume fraction; R is the fiber radius; Ef and Em are the fiber and matrix 
moduli; and E = fEf + (l-f)Em. While this relation is based on several 
assumptions that may not always be valid in a given CMC [9], it is likely to 
indicate trends quite well. 

0°ply 

-m   2hg„ - 

• z 

0          - ]J-1-L-Ca   ** 

90° ply o°piy 

0 J) 

2hgo      2a 

1_ 

^0^ 
plain strain 
propagation 

/boundary of tunneling crack 

•:■•;. 0" piy 

-A tunnel 
—/ propagation 90° ply 

v;;:{-;;:o°piy 

(b) 

Figure 1. (a) Schematic of a plane strain crack spreading from a 90° ply. (b) Schematic of a 
tunneling crack propagating along a 90° ply and lapping into the adjacent 0° plies. 

Crack propagation is assumed here to occur when the crack tip stress 

intensity factor, X^, takes a critical value Kc = ^ET0 , where E' is an 

effective modulus for the laminate [3] and T0 is the effective fracture energy for 
the matrix crack in the 0° ply. This criterion implies that the matrix is an 
elastic, brittle material. 

Because p is an increasing function of u and crack propagation occurs at a 
nonzero value of ^p, the steady state crack configuration can be attained for 
long bridged cracks where the critical stress for propagation, <jp, becomes 
independent of the crack length [10]. This limiting stress is the matrix cracking 



356 B.N.COXetal. 

stress,   amc.   It   can   be   readily   deduced   from  p(u)   by   evaluating   the 
complementary energy density [11]: 

^mc = 

6if2EfE
2r0 

2 p2 RQ-fYE, 

1/3 

(2) 

A characteristic length, the "bridging length scale," am, is associated with 
the traction law, p(u). For the model of fiber bridging underlying Eq. (1), it has 
the form [7,10] 
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The stability of the plane strain phase of crack growth is determined entirely by 
the ratio, h90/am, of the 90° ply half-width to the bridging length scale (Fig. 2). 
If h90/am < 8/37T2, öp(a) is a decreasing function; crack growth is unstable and 
always requires an applied stress <Ta > <Tmc. If h90/am > 8/3%2, Op(a) is an 
increasing function; crack growth is stable, commencing at some aa < crmc. 
(The critical ratio 8/3TT

2
 is found by equating the critical stress for a Griffith 

crack of size h90/am to the steady state matrix cracking stress, C7mc.) 

Whatever the value of h90, crp eventually reaches the matrix cracking stress, 
crmc, approaching close to it for crack lengths large compared to am. It is for this 
reason that <7mc serves as a design limit for forming long matrix cracks for any 
distribution of flaws. In current CMCs, am is typically ~ 0.1 mm at room 
temperature [10]. Thus, h90/am > S/3%2 in most cases, so that crack growth is 
stable; while oj, = amc for cracks ~ 1 mm or more. 

Now consider the events leading up to the propagation of a plane strain 
crack. The critical stress for tunnel crack propagation can be computed from 
energy considerations [12,13]. When the tunneling crack is long, the critical 
stress approaches a constant asymptote, <rt, which is a function ot(d) of the 
distance, d = a-h90, to which the tunneling crack laps into the adjacent 0° plies 
as it propagates along the 90° ply. This function depends on the 90° ply width 
and the ratio r\ = r90/r0 of the effective fracture toughnesses of the 90° and 0° 

plies. The minimum, cr,(imn), of crt(a) is generally a lower bound to the initiation 
stress for matrix cracking. The initiation stress will be significantly higher than 

<7,(min) only if intrinsic flaws are much less than the 90° ply width. 

Estimates for existing CMCs suggest this is not usually the case. The sum 

^90 + 4iin> wnere 4ün is the value of d corresponding to Ot = <T,(imn), will be the 
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half-width of the plane strain crack created by the tunneling event. For r\ < 1/2, 
dmin = 0; the tunneling crack is confined entirely to the 90° ply. Some nonzero 
increment in the applied load will be required before propagation of the newly 
created plane strain crack into the 0° plies occurs. For 77 > 1/2, dmin > 0; and in 
this case it can be shown that the tunneling crack simultaneously satisfies the 
criterion for propagation as a plane strain crack into the 0° plies [14,15]. Any 
increase in load after the tunneling crack has formed will be accompanied 
immediately by its broadening in the plane strain crack configuration [15]. 

SMW1.051895 

Cfp/CT| mc 

,h9o/am = 0.2 

10 

a/a™ 
20 

Figure 2. The critical stress for plane strain crack growth. 

The correct value of the toughness ratio, 77, is difficult to specify for some 
particular CMC from microstructural considerations alone. It will probably 
always have to be measured. However, the range 0 < 77 < 1 seems reasonable 
for composites with identical materials in the 0° and 90° plies [15]. 

One further condition must be satisfied for a stable phase of plane strain 
cracking to occur. The tunneling crack must not penetrate beyond the adjacent 
0° ply during its formation. If it does, it will enter new unbridged zones, i.e., 
the next 90° plies, the critical stress for its formation will drop, and the 
initiating crack will radiate unstably out in all directions without limit. This 
consideration imposes bounds on the minimum ratio, ho/h90, of the 0° and 90° 
ply half-widths for stable cracking, given a value of the toughness ratio, 77. A 
stability map can thus be created from solutions to the tunneling problem (Fig. 
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3). Figure 3 shows the approximate location of a typical SiC-SiC composite on 
the map, as well as the repositioning that would be expected if values of the 
micro-structural parameters / (volume fraction), R (fiber radius), t (friction 
stress), or 77 (toughness ratio) were halved. 
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Figure 3. Map showing the regimes where a phase of stable plane strain crack growth can follow 
crack initiation by tunneling. 

Figure 4 shows an alternative view of the role of ply widths in the cracking 
process. Here the boundaries of stable and unstable cracking are plotted out 
against the 90° ply half-width, h90, for the fixed ratio h90/h0 = 1. One solid 
curve shows the critical stress for a plane strain crack (no bridging) of width 
2h90. The higher solid curve shows the stress at which the plane strain crack 
curve intersects the far boundary of the first 0° plies, i.e., Op(fc9o + 2h0). All 
stresses are normalized against crmc, the limiting critical stress for an infinite 
crack wholly contained in an infinite (hypothetical) 0° ply. The horizontal 
dashed lines show the stress values at which crack initiation will occur by 
tunneling for several values of the toughness ratio, 77. Here it is assumed that an 
initial flaw comparable to or slightly greater than the 90° ply widths pre-exists, 
so that the steady state tunneling stress, <Tt, is appropriately taken as the 
initiation stress. If only smaller flaws exist, the dashed line should be raised. 
Whether a stable phase of plane strain crack growth exists is determined by 
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where the horizontal dashed line meets the vertical line drawn at the given 
value of 90° ply width, h90/am. This point is denoted P. 

If 77 < 1/2, P will fall below the Griffith curve. In other words, after 
initiation by tunneling, a further load increment to crG will be required before 
the crack extends stably in plane strain. This stable growth will terminate when 
the applied load rises to cp(hgo + 2ho). 

If 1/2 < 77 < Hcrit. P wiH fall between the curve <Jp(h90 + 2h0) and the 
Griffith curve (the case shown in Fig. 4). Here 77crit is the critical value of 77 for 
the ply width ratio unity in Fig 3. Plane strain crack growth will follow 
immediately after crack initiation upon further load increase. Once again, stable 
growth will terminate when the applied load reaches ap(h90 + 2h0). 

If 77 > 77crit, P will fall above the curve ap(h90 + 2/i0) and unlimited unstable 
cracking will accompany crack initiation. 

Thus ap(h90 + 2/i0) should be identified with the engineering design limit, 
cCrit- Whatever the ply toughness ratio, any matrix cracks will arrest without 
exceeding the first 0° plies at all stresses below <rcrit = ap(h90 + 2h0). 

3.   Subcritical Crack Growth Mediated by Fiber Creep 

Whenever crack arrest depends on fiber bridging, it will give way to subcritical 
crack growth at high temperatures because of fiber creep. Thus, subcritical 
crack growth will fix a finite lifetime for all applied loads between aG and actit 
in Fig. 4. 

A bridging law for creeping fibers coupled to the matrix by friction takes 
the relatively simple form 

ü = 2Ap[p + ßp] (4) 

provided: there are no rate effects in the interfacial friction; fiber creep is 
confined to the slip zone adjacent to the matrix crack by the stress 
concentration due to the crack; the matrix remains elastic; and fiber creep 
follows a linear law 

Ef=Öf/Ef+ß<y . (5) 

where ef and öf are the fiber strain and stress and ß is a creep coefficient [5]. 
For general fiber creep laws, an explicit relation between u and p and their time 
derivatives cannot always be derived; but this is unlikely to have any 
qualitative effect on the subcritical crack growth problem. 
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The condition for matrix crack extension is 

^Mtip - ^a _ ^b - ^c (6) 

where Ka is the applied stress intensity factor and K\, its reduction due to 
bridging. Consider the differential 

jzr      ^Kti dKti 
dK,:„ = —r1- da + —r1- dt up da dt (7) 
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Figure 4. Diagram defining OQ and Ocrn, which bound the domain where life at high temperature 
will be determined by subcritical plane strain crack growth; and showing schematically the 
boundary between stresses for which fiber creep rupture follows subcritical crack propagation and 
vice versa. 

For stable rate-independent growth, which is the regime of interest, the first 
term must be negative. The second term is positive, reflecting the decay of 
bridging. Maintenance of the condition Eq. (6) implies dKtip = 0 and via Eq. (7) 
there follows a governing differential equation for the crack velocity, da/dt. 
Numerical methods for solving this equation may be found in Refs. 6 and 16. 
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Typical solutions for the crack velocity are shown in Fig. 5. Essential 
characteristics are as follows. 1) The velocity history can be divided into an 
initial deceleration transient; and a quasi-steady state at long crack lengths, 
defined by increasing insensitivity of da/dt to the initial conditions [6]. ("Quasi- 
steady state" is preferred to "steady state" because there is no invariant of the 
motion as a -» °° [16].) The deceleration transient is dominated by creep 
relaxation of fibers right next to the 90° ply, while the quasi-steady state is 
dominated by the loading history of fibers in a small, propagating zone just 
behind the crack tip [6]. 2) Unless the 0° ply width is much greater than the 90° 
ply width, crack propagation across the first 0° ply (whose limits are not 
marked in Fig. 5), which is followed by catastrophic cracking and therefore 
defines lifetime in the sense of this paper, is spent entirely in the deceleration 
transient. 3) The velocity and therefore the time to failure are very strong 
functions of the applied stress, with da/dt -> °° and lifetime tc -> 0 as cra -> 
<7mc. 4) At long crack lengths, the crack continues to accelerate, but 
increasingly slowly. 
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Figure 5. Crack growth rate histories for cracks bridged by creeping fibers (from [6]). Curves are 
shown for three different 90° ply widths and three different applied stress levels. The initial crack 
length, which exceeds the 90° ply width for the cases shown, is defined by arrest of the rate- 
independent plane strain crack that grows from the initiating tunneling crack. The calculated 
crack growth is pursued well into hypothetically semi-infinite 0° plies. 
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4.   Other Aspects of Composite Failure 

4.1 FIBER FAILURE BY CREEP RUPTURE 

In the calculations of Fig. 5, fibers were assumed never to fail. In reality, they 
will fail by creep rupture if the fiber strain exceeds some critical value, e^t- 
Fiber failure may occur either after through cracks have formed or during the 
phase of subcritical crack growth. The former will always be the case for 
applied stresses, <7a, sufficiently close to or above crmc, since crack propagation 
will then be either very fast or dynamic (depending or whether aa is above or 
below crcrit). Because subcritical matrix crack propagation rates are such strong 
functions of applied stress, there will be a transition to fiber failure during 
subcritical propagation as aa is reduced. The velocity becomes vanishingly 
small as the applied load approaches the minimum, oG, required for penetration 
of the initiating tunneling crack into the 0° plies. Lower velocities imply an 
increasing time for the accumulation of fiber creep strain; and the available 
time increases much faster than the fiber's creep rate declines [6]. New 
experiments are required to confirm this transition. 

4.2 CRACK PROPAGATION FOLLOWING FIBER FAILURE IN THE 
SMALL SCALE BRIDGING LIMIT 

In the domain where fiber failure occurs during subcritical crack growth, the 
surviving bridging zone will often be much smaller than other crack and 
specimen dimensions. Small scale bridging conditions will then apply. After 
some growth, the crack configuration will approximate a steady state 
configuration governed solely by the applied stress intensity factor, Ka. The 
velocity will approach a steady state value, Vss, which will be a function of Ka 

rather than directly of crack length. Complete solutions for this steady state 
have been presented in Ref. [17]. The solutions show many similarities to those 
for equilibrium craze zones in polymers, e.g., Refs. [18-21], but also some 
distinct features peculiar to the mechanics of brittle matrix composites [17]. In 
particular, crack growth occurs only when Ka exceeds Kc. At the lowest 
stresses, i.e., small Ka-Kc 

Vss~(Ka-Kcf
2el2 . (8) 

where £^rit is the critical fiber strain. Small Ka-Kc is probably the most 
important regime for the present context, since fiber failure during subcritical 
crack growth occurs only for stresses just above <7G> which means that Ka is 
near Kc. 

As illustrated by the asymptotic result Eq. (8), the crack velocity following 
fiber failure increases much faster than when the fibers remain intact (cf. Fig. 
5). For practical purposes, the onset of fiber failure in the wake of a subcritical 
crack could be considered equivalent to structural failure. 
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4.3 THE LIMITS OF SINGLE CRACK MODELS 

The constitutive model of Eq. (4) was derived for a single matrix crack and the 
resulting crack growth curves were all calculated in the absence of any stress 
redistribution effects that might arise from similar, nearby cracks. At room 
temperature, multiple matrix cracks are the common case; and rather than being 
noninteracting, their separation is in fact determined by marginal overlap 
between their interfacial slip zones. In a body with multiple matrix cracks, the 
overlap ought to be factored into the bridging law for creeping fibers. Multiple 
cracks should indeed be expected in a smooth specimen. But at high 
temperatures, recent experiments on notched SiC/SiC composites have shown 
that while multiple cracks do initiate, only one propagates very far, so that the 
problem reverts to that of a single dominant matrix crack [22]. Whether 
multiple or single cracks will occur at high temperatures in the presence of 
blunt stress concentrators remains a topic of current research. 

When arrays of cracks arise in the 90° plies in smooth laminates, crack 
interaction effects ought to be computed, e.g., by employing weight functions 
for arrays of cracks instead of those for single cracks [13]. Crack interactions 
will accelerate the formation of through cracks via crack coalescence. For an 
isolated matrix crack growing away from a 90° ply through neighboring 0° 
plies, unstable growth to a through crack will commence when it has reached 
the far side of the 0° plies. If two cracks grow towards one another into the 
same 0° ply from successive 90° plies, they each need cross only half the 0° ply 
before coalescence leads to catastrophic cracking; and their mutual interaction 
will accelerate even this diminished phase of subcritical crack growth. The 
boundary marked <xclit in Fig. 4 will move down, because of the stricter limits 
that must be satisfied for the initiation (tunneling) phase to terminate in crack 
arrest. How far down the boundary will move will depend on how the 0° ply 
half-width, h0, compares to the bridging length scale, am. If ho/am » 1, the 
change will be slight, because the rate-independent plane strain cracking stress, 
<jp(a), will approach close to the limit crmc before crack interaction effects 
become significant. If h0 ~ am, the fall in actit will be considerable, but readily 
calculated [13]. The failure map retains the same appearance. 

Even when multiple cracks exist, the trends and failure maps presented here 
will remain qualitatively true. The overlap of slip zones does not change the 
essential features of the bridging constitutive law, namely that p is an 
increasing function of u and decays with time. Furthermore, the law already 
contains implicit assumptions about micromechanics which are doubtful in 
detail. The constitutive law of Eq. (4) serves as a good guide to possible 
fracture behavior, with its details always understood to require empirical 
calibration, preferably using fracture data rather than micromechanical tests [9]. 
Whatever the exact form chosen for a bridging law like Eq. (4), once it is 
calibrated against experiments, it will probably yield accurate predictions for a 
wide range of other stress levels. 
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Abstract. Recent advances in understanding the statistical fragmentation 
process of a fiber in a single filament composite have also been a key in 
understanding the failure process in fiber-reinforced ceramics, especially the 
strength distribution and size effects. Comparisons with Monte Carlo 
simulations suggest that accurate reliability estimates are possible for very 
long composites. This paper reviews the key theoretical developments. 

1.  Introduction and Overview 

For the past 25 years, going back to Aveston et al. (1971), the single 
filament composite has been an important tool in the study of the failure of 
fibrous composites. The model involves a single brittle fiber embedded 
along the center-line of a 'dog-bone', matrix specimen, where the matrix has 
considerable plasticity or ductility. As the overall strain is increased, the 
fiber fails progressively at random flaws producing an increasing number of 
shorter and shorter fragments. Around a fiber break the tensile stress decays 
from the far field value to zero at the break over a certain fiber length, which 
grows with strain level. In these unloading zones no further breaks occur as 
the flaws there tend to become 'shielded' from further stress increases. 
Eventually the fragmentation ceases leaving a limiting distribution of fiber 
fragments along the dog-bone as unloading zones saturate the fiber. 

In interpreting experiments, it is typically assumed that the magnitude of 
the shear traction in the unloading zone is a constant, rs, as though the 
matrix is plastic, or, Coulomb sliding friction prevails; elsewhere the shear 
tractions are zero. The actual mechanics of load interaction near a break is 
complicated (Nairn (1992)), but the practical realism of the constant TS 

assumption is surprising. Often the fibers are assumed to follow a Weibull, 
weakest-link model for strength with shape parameter p and scale parameter, 
OQ measured at some gage length /0. An even simpler assumption is that the 
fiber strength is just a unique constant aQ, (i.e., p = «>). Regardless, the 
experimental fragment length distribution reflects large variability. 

Most frequently the single filament composite experiment has been used 
to determine the interfacial shear stress rs, say for a new matrix or fiber 
surface treatment (e.g. Netravali et al. (1989), Henstenburg and Phoenix 
(1989), and Wagner and Eitan (1990).  It has also been been used to 
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determine the fiber strength distribution at the mean fragment length 
(Henstenburg and Phoenix (1989) and Gulino and Phoenix (1991)). 

In modelling the failure of ceramic fiber-ceramic matrix composites, the 
single filament composite concept has become an important element. Curtin 
(1991b) developed the key ideas, pointing out that the ceramic matrix allows 
the fibers to engage in 'global load sharing' wherein the load of a failed fiber 
is transferred laterally, by frictional shear coupling through matrix slabs, 
equally onto all surviving fibers. Thus an individual fiber behaves like a 
single filament composite in a large effective medium of the average 
response of all the other fibers and matrix. Literature now exists on 
determining the strength distribution of the composite, and various 
approximations for the composite mean strength, failure strain, coefficients 
of variation, size effects and fiber pullout distributions. See for example 
Phoenix and Raj (1992), Phoenix (1993), Neumeister (1993), Curtin (1993) 
and Ibnabdeljalil and Phoenix (1995). These theories are based on 
approximations, which all incorrectly model the subtleties of unloading 
zones near fiber breaks. They work well for p > 7, but exhibit large 
inaccuracies for p < 2 which has importance in modelling fibers heavily 
damaged during processing of the composite. 

Developing accurate statistical theory for fiber fragmentation has proved 
challenging. Monte Carlo simulation models were developed by Fräser et al. 
(1983), and by Henstenburg and Phoenix (1989) who gave basic scalings. 
Curtin (1991a) developed a theory for p> 0 using results of Widom (1966) 
for a problem equivalent to the 'car parking problem' of Renyi (1958). 
Kimber and Keer (1982) considered the same problem in the context of 
matrix cracking. The problems of Widom (1966), Rgnyi (1958), and 
Kimber and Keer (1982) all correspond to unique fiber strength (p -> <*>). 

With respect to the mean composite strength, Neumeister (1993) 
developed what appeared to be an accurate approximation as compared to a 
numerical implementation of the theory of Curtin (1991a). A puzzling 
feature, however, was the appearance of an anomaly for 0 < p < 2 wherein 
the strain to failure suddenly jumped to infinity. In fact, the failure strain is 
finite for all p > 0. This result turned out to be an artifact of the solution of 
Curtin (1991a), which has turned out not to be exact. 

Recently, Hui et al. (1995) developed an exact, closed form solution for 
fragmentation in the single filament composite, and some generalizations are 
in Hui et al. (1996). The key was to derive exact equations governing the 
evolution of fiber fragments for all p > 0 (including random initial breaks 
with spacing l/a0). The final distribution for normalized fragment length 
was also obtained. The special case of unique fiber strength (p = °°), was a 
limiting case with the normalized fragment lengths lying between 1/2 and 1. 
The convergence was slow, being 0(p_1/2). As p -> 0, the normalized 
fragment length was found to be exponentially distributed. 

Hui et al. (1995) also applied this fiber fragmentation solution to the 
composite model of Curtin (1991b) to obtain the ultimate strength p* for all 
p > 0. Expressions were given in terms of elementary functions that allowed 
computation of p* and the associated dimensionless fiber stress s* to any 
degree of accuracy for any p > 0. 

Recently, Phoenix, Ibnabdeljalil and Hui (1996) used the solution of Hui 
et al. (1995) to determine approximations to the distribution for strength of 
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a long composite with a finite number of fibers n. The results were 
favorably compared to numerical results from a Monte Carlo simulation 
model. The comparison suggests that predictions are possible for composite 
lengths orders of magnitude beyond what a Monte Carlo simulation can 
handle. We now review key features of these new developments. 

2. Basic Model and Scalings for Strength and Length 

Prior to any loading, flaws and discontinuities (flaws of strength zero) are 
assumed to occur along the fiber according to a compound Poisson process 
in distance where the average number of flaws per unit length with strength 
less than a is given by 

A{°) = iMlQ)i.oloQf + oo. (1) 
The first term leads to the usual Poisson-Weibull model for fiber strength 
where oQ > 0 is the Weibull scale parameter relative to a continuous fiber test 
length /0 in simple tension, and the exponent p > 0 is the usual Weibull shape 
parameter. The second term adds random discontinuities along the fiber 
with mean rate OQ per unit length. 

Around a fiber break, the length required to build up to the far field 
fiber stress a from zero is the slip length lj(a) = ra/(2Ts) where r is the fiber 
radius and xs is the interfacial shear stress. Within this length, the fiber is 
'shielded' from further breaks. The normalizing scales for strength and 
length are respectively 

<xc = <r0{W(<v)}1/0>+1)    and    8C = lQ{c^l{lQxs)}
pl{i>¥X\        (2) 

A simple interpretation is that at the fiber stress level oc the mean number of 
Weibull flaws (a0 = 0) over the length Sc, which have strength less than or 
equal to ac, is exactly one. Also at the stress level crc, the length Sc is exactly 
double the slip length //trc). that is, the total shielded length around a fiber 
break. Thus, we work henceforth in terms of a normalized stress s = alac, 
and distance is always actual distance divided by Sc. Then the mean number 
of flaws per unit dimensionless length at the dimensionless stress s is 

A(s) = a + sP (3) 

where a = a08c= ao/o/(°c/0b)/> is the mean number of initial breaks in Sc. 
Furthermore, the slip length becomes s/2 at fiber stress s. The main 
complications are that new breaks cannot occur in slip zones around old 
breaks, which may overlap, and the stress carried by a fiber in a slip zone is 
reduced depending on the distance to the nearest break. 

3. Distribution of Fragment Lengths versus Stress Level 

A key quantity is p(s, x), the density of the number per unit length of inter- 
break spacings or fragments of length x at stress s. The normalizing 
condition is 
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jxp(s,x)dx =  1,      for all  s > 0. (4) 
0 

Hui et al. (1995) derived the governing differential equations for p(s,x) in 
terms of fragments of length x both being created and disappearing as the 
stress s is increased.   Here we quote only their solution for the important 
special case p > 0 and a = 0. We let 

A0(s) = ^exp^Ms^), (5) 

«F(^V2) = exp [- 2A   f r_1(l -e*)dt ], (6) 

and A = p/(p + 1). Then 

p(s,x) = A0(s) exp(rspx), s<x (7a) 

s 
p(s,x) = 2p | r1 Mt) exp[ -fix+t/2)] dt + p(x,x), s/2<x<s    (7b) 

x 

2x 
p(s, x) = 2p J r1 A0(0 exp[ - AJC+</2)] *  + Pfe ^)>   ^ < s/2     (7c) 

where 
p(x,x)   =  ^exp[-^+l/(l+p)«K^+1/2). (8) 

Hui et al. (1995) reduced this to Widom's (1966) results in the limit a = 0 
and p -» °° with s -> °°. They also obtained F(x), the fraction of fiber 
segments in an infinitely long fiber with length less than x at saturation (s -* 
oo), and showed that F(x) has a lower tail for small x > 0 that behaves as 
c(p)x2f»x for an explicit constant c(p). Fig. 1 illustrates the behavior of F(x) 
on Weibull probability coordinates showing the slow convergence in p. 

4. Statistics for Composite Strength at a Cross-Section 

For a composite with n fibers we consider an applied far field fiber stress s, 
and consider the statistics of the load carried on a cross-sectional plane in 
terms of nearby breaks, which reduce the fiber loads at that plane. The first 
quantity of interest is the asymptotic mean normalized stress function n(s) 
for a large composite (n-> °°) for s > 0. We ignore the tensile load carried 
by the matrix so the 'effective' composite stress is the calculated stress times 
the fiber volume fraction,/. This is understood in all calculations. 

To determine p(s), one method has been based on estimating g(s,y), 0 < 
y < oo, the probability density function for the absolute distance y to the 
nearest break in a fiber from a plane. An alternative and equivalent method 
for calculating p(s), is to travel along a given fiber, and calculate the average 



RECENT ADVANCES IN MODELLING FIBER FRAGMENTATION 371 
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Figure 1. Limiting fragment length distribution, F(x), on Weibull coordinates for a = 0 
and various p values. Note the power form of the lower tail with exponent 2p+l. 
(Taken from Hui et al. (1995).) 

fiber stress. It is quickly seen that 

* 
H(s)  =  j(x*/2)p(s,x)dx   +  sj{(x-s)+s/2}p(s,x)dx, (9) 

0 s 

which uses the exact closed form solution to p(s,x) given by (5) to (8). 
The next key quantity is the variance function r0(s)/n for a composite 

cross-section, where r0(s) is the variance in the stress of an arbitrarily 
selected fiber. A calculation travelling along a fiber leads to 

r0(s) = (1/3) [x3p(s,x)dx + s2jxp(s,x)dx 

- (2/3)s5 \p(s,x)dx - p(sy 
s 

(10) 

Also of interest is the covariance function r^s)/n for the stress at two cross- 
sections separated by a normalized distance 6 > 0. Actually its local 
behavior for small S is what is needed in using the asymptotic theory for 
Gaussian processes from Leadbetter, Lindgren and Rootzen (1983). For 
larger p, Phoenix et al. (1996) have shown 

rM - r0(s) {1 - 6(S/s)2 + o(5/s)2}. (11) 

The next quantity of interest is the maximum of the asymptotic mean 
stress n(s) called n*, being the composite stress where the load-strain curve 
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begins to decrease. The corresponding value of s is called s*, so p* = p(s*). 
From an asymptotic analysis Hui et al. (1995) obtained extremely accurate 
approximations good for p > 1 and for 0 < p < 0.2. Based on these 
approximations, an accurate approximation for all p > 0 is simply 

(12) {(2/p)(4p+2)/(4p+l)}1/(^+1), 

being a slight improvement over the version in Hui et al. (1995). Earlier 
approximations in the literature have reflected incorrectly the unbounded 
behavior as p -> 0. 

Apart from being able to calculate the true value of p* numerically for 
all p > 0 using (7) and (9), Hui et al. (1995) obtained the three term 
asymptotic expansion 

p* « s*[l + S*^I2 + es*2p+2]cxp{- s*^!-^*!»1/®} (13) 

where A = p/(p+l) and 0 = {(7p+12)/(2p+3)}/24. This approximation has 
less than 1% error for p > 3 and at p = 1 the error is only about 8% low. 
Empirically, it seems that 

p* »  1-cp  + dp2 (14) 

for small p > 0, where c - 0.5 and d « 0.2 and it is consistent with the fact p* 
= 1 at p = 0, a = 0. Figure 2 plots these approximations against the true p* 
obtained numerically. Phoenix et al. (1996) pursue this issue analytically. 

0.5 

   Exact Solution 
 Equation 13, 3 terms expansion for ß{Y) 

 Equation  14, /z'=l-(p/3)+0.2p2 

,    .    i    i    I    .    i    i i I i—i—i—i—I—i—i—i—i—I—'—l 

12 3 4 
Weibull Modulus,  p 

Figure 2. Plot of normalized asymptotic mean composite strength fi* versus shape 
parameter plat a = 0. Shown are exact solution from Hui et al. (1995) and 
approximations based on large and small p. 

Next we evaluate the asymptotic, normalized, standard deviation for the 
strength of a composite cross-section. This is denoted y*n and it is given by 
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(15) fn = {r0(s*)/n}m. 
Phoenix et al. (1996) have done this for p > 0 and a = 0 by numerically 
integrating in (10) with s =s*.   Figure 3 shows a plot of y*nn1,2 = 
[r0(s*)}1/2. Also shown is an approximation for {rQ(s*)}112 based on one 
in Phoenix and Raj (1992), and is given by 

r0(s*) - s*2{[l - expl-j*^1}]^ - [1 - exp{-.s*'M-1}]2/4},       (16) 

and we take s* as given by (12). This approximation works well for p > 0.8. 
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Figure 3. Plot of normalized asymptotic standard deviation «1/27*n for composite 
strength versus shape parameter p for a = 0. Shown are exact solution and an 
approximation based on Phoenix and Raj (1992). 

Lastly we determine a refined mean /**„ and standard deviation T*„, 
respectively, when n is small. A refinement, from Phoenix and Raj (1992), is 

H*n = n*+A*n, (17) 

A*n - n~2/3{(p/3)s*p+2 

+ [(l-p)ß]s*2p+3}2l3{(ß + l)2s*p[l-2s*p+1]}~lß (18) 

For p > 4, A*n is roughly 0.25/1 '. To obtain a corrected standard 
deviation y*n Phoenix et al. (1996) suggest an adaptation of a result for 
classical bundles, which is 

r*n =   f„[l-(O.317)0i*/fn)V
2/3e4/(3'')«-4/3]1/2. (19) 

The main result (Phoenix and Raj (1992)) is that the strength at a 
composite cross-section is approximately normally distributed with mean 
p*n and standard deviation f*n. The covariance, r^s*)/n, for two planes 8 
apart is roughly r0(y*){ 1 - 6(8/s*)2}/n. 
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5.  Asymptotic Distributions for the Strength of Long Composites 

To estimate Hm>n(oloc), the distribution function for the strength of a long 
composite of length L = mSc, there are two approaches (Phoenix et al. 
(1996)): The first is to view the strength of planes along the composite as 
being represented by a continuous Gaussian process with mean p*„ and 
covariance function, r^s*)/n, and then to use asymptotic results for minima 
in Gaussian processes. The second is to view the composite as a discrete 
chain of m' short bundles or 'slabs' each of length ßSc, so that L = m'ß8c , 
and where 0 < ß < 1 is an adjustable parameter. Note that m' = miß. Then 
each bundle has independent strength following a normal (Gaussian) 
distribution with mean p*n and standard deviation y**n. The composite fails 
when the weakest plane or bundle fails. 

In the Gaussian process version (Leadbetter, Lindgren and Rootzen 
(1983)) we let 

am,n =r*«/[21oge(m)]1/2 (20a) 
and 

bm,n  =H*n -r*n{[21Oge(m)]1/2-loge(5*«/2)/[21Oge(m)]1/2}.(20b) 

Then the approximation to //m,„(o/<7c) is the double exponential form 

Hm,n(<r/oc) - 1 - exp{- exp{[(<r/<yc) -bm>n ]/am,n}}, <* > 0, (20c) 

and its median is approximately 

oVnfo:    -  bm,n +r*«l0ge(l0ge(2))/[2l0ge(m)]1/2. (20d) 

In the chain-of-bundles version let z = [(o7<rc) - A**n]/r**nbe the 
standardized stress. From Feller (1968) the standard normal distribution 
function has a lower tail described by 

<P*(z) = (2/rr1/2exp(-z2/2)/|z|,     z « 0. (21) 

Using the fact that (1 - <P*)m' - exp(- m'<P*) for large m' we may write the 
approximation 

Um,nW°c) « 1 - exp{- (m/ß)<P*([(a/<Jc)- ß*nVr*n)}, <7>0. (22) 

In essence we are assuming that the composite strength is given by the 
weakest of rri = miß cross-sections spaced ß8c apart, where ß is chosen so 
that the strengths are effectively independent and identically distributed. A 
double exponential version of (22) is less accurate. Using results from 
CrameY (1946), the median, a*m,n, is approximately 

d*mnl°c  - /A. -)**»{[21oge(m/^]1/2-{loge(loge(/n/^) 
+ loge(4;r) + 21oge(loge(2))}/{2[21oge(m/j8)]1/2}.        (23) 

In comparing the medians for the two versions, (20) and (23), there is no 
single choice of ß that renders these equivalent. Phoenix et al. (1996) show 
that the effective link length ß8c decreases slowly with increasing length L = 
mSc or lower tail probability of interest. 
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In our analysis of Monte Carlo data we consider the 'reverse weakest link 
transform' 

**([(*/<*) -A**J/r*«) = 1 - {1 - Hmin(<j/ac)}
l,m' (24) 

where Hmtn(oloc) is the empirical distribution function calculated from the 
Monte Carlo data at L = m5c = (m'ß)Sc. The idea is adjust ß to superimpose 
<*>m' ([(<r/<7c) - P*nVr*n) onto 0([(o/ac)- /**„]//<*«). the asymptotic 
normal distribution for cross-section strength. 

6. Comparison of Theory and Monte Carlo Simulations 

The Monte Carlo simulation program for composite failure is described in 
Ibnabdeljalil and Phoenix (1995). The comparison between theory and 
simulation is carried out for the typical vale p = 5, for n = 50 fibers in the 
composite and for composite lengths of m = L/Sc = 2, 5, 10, 20, and 50. 
There were 500 simulations for each case taking in total several hundred 
hours of CPU time on a Sun (Sparc 2) workstation. Fig. 4 shows reverse 
weakest-link scaling of the data, using (24), for the case ßSc = 0.75c. 
Choices such as ß = 0.4 or 0.8 give noticeably poorer agreement in this 
range of m. The uncertainty in ß, calculated by comparing the formulas for 
the medians, is barely noticeable as the numerical effects are about 0.009 (as 
compared to p*n « 0.74). For n = 50 the finite size corrections to the mean 
(18) and standard deviation (19) turn out to be much more important at 
+2.5 % and -16%, respectively. 
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Figure 5 shows the relationship between median lifetime and composite 
length m = m'ß = L/Sc. Also plotted are the theoretical medians from the 
two versions where the Gaussian process version appears less accurate. 
Agreement is good to values of m up to 104, and one expects that an 
extrapolation would be valid to at least m = 106, far beyond the present 
capability of simulation. Note that at m = 50, the median strength is down 
by about 8%, and at m = 100,000 it is projected to be down by 18%. 
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Figure 5. Plot of median composite strength a*m,n/<yc for two approximations (20d) 
and (23) together with results from Monte Carlo simulations for n = 50, m = L/Sc = 2, 
5, 10, 20, 50 and ß = 0.7. 

Figure 6 shows plots of the composite strength distribution Hm,n{olac) 
given by (22) using ß = 0.4 against the Monte Carlo data on double 
exponential coordinates where (20c) would plot as a straight line. Clearly 
(22) does a better job of fitting the data than the double exponential form 
(20c) (not shown) would do since the plots are quite nonlinear. The value ß 
= 0.4 was used since it does a better job of fitting the lower tails. Actually 
the simulation requirements in determining lower tail probabilities for a 
given length, are about the same as those to dermine the median at longer 
lengths. As mentioned earlier, longer lengths seem to require slightly 
smaller effective values for ß. 

7.  Discussion and Conclusions 

Compared to Monte Carlo simulations, the Gaussian process version does not 
fare quite as well as the chain-of-bundles version, which has the adjustable 
parameter ß. The value of ß8c = 0.7Sc seems reasonable in view of the fact 
that the 'effective' exclusion zone length around a break is about s*Sc = 
0.885c. In the Gaussian process version, asm->» only the local decay of 
r^s) near 8 = 0 is used but the quadratic approximation (11) substantially 
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overestimates this decay (underestimates the true covariance) for larger S, 
say S = 0JSc, and this may be the cause of disagreement for moderate 
values of m. In any case the agreement between theory and Monte Carlo 
simulation is excellent lending confidence to extrapolations of median 
strength and high-reliability calculations (lower tails of the composite 
strength distribution) to larger composites. 

Extreme Value  (Gumbel)  plot 

Simulation Parameters: 
n,=50, n,,m=1000 
,0=5.0, /3 = 0.4, m=5,10,20,50 
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Figure 6. Comparison of weakest-link version (22) of Hmn(o/oc), the composite 
strength distribution, with Monte Carlo simulation results for n = 50, m = L/Sc = 2, 5, 
10,20, and 50 and ß = 0.4. 
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PREDICTING NON-LINEAR BEHAVIOUR IN MULTIPLE-PLY CROSS- 
PLY LAMINATES RESULTING FROM MICRO-CRACKING 

L. N. MCCARTNEY 
Centre for Materials Measurement & Technology 
National Physical Laboratory 
Teddington 
Middx. U.K. TW11 OLW 

Abstract. Laminated composites exhibit non-linear stress-strain behaviour 
because of the initiation and growth of arrays of cracks in the plies of laminates 
leading to stress transfer between cracked and uncracked plies and to 
consequential changes in the effective thermoelastic constants of laminates. 
Recent progress with the development of stress-transfer models for transverse 
cracking in simple cross-ply and multiple-ply laminated cross-ply composites is 
described. The equilibrium equations, the out-of-plane stress-strain relations and 
the interface conditions (assuming perfect bonding) together with boundary 
conditions involving stresses, are satisfied exactly. The remaining in-plane stress- 
strain relations and boundary conditions involving displacements are satisfied on 
averaging through the thickness of each ply. The model is based upon a single 
assumption and the predicted stress and displacement fields lead to stationary 
values of the Reissner energy functional. The generalised in-plane strain model 
of stress transfer, when coupled with ply refinement methods, offers a powerful 
technique for predicting accurately both stress and displacement distributions, 
and the effective thermoelastic constants of cracked laminates. 

It is also shown how solutions may be used with energy balance methods to 
predict simple relations governing the initiation and growth of ply cracking, and 
non-linear stress-strain behaviour. While the model is formulated at the ply level 
the criteria governing the formation of cracks in transverse plies are such that 
they involve only parameters that can be defined at the macroscopic laminate 
level, e.g. the effective thermoelastic constants of the cracked laminate, crack 
closure stresses and the energy absorbed in the laminate by ply crack formation. 
Thus the use of a high quality stress-transfer model leads to the construction of 
a bridge between a model formulated at the ply level, and the macroscopic 
behaviour of multiple-ply laminates containing arrays of transverse cracks. 
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1. Introduction 

It is well known that the considerable experimental data reported in the literature 
indicate that the stress/strain behaviour of laminated composites exhibits non- 
linear behaviour following the initiation of microstructural damage in the form 
of transverse cracks normal to the direction of loading. In this case, fracture 
events are distributed throughout the laminate and lead to non-linear behaviour 
at the macroscopic level, although the mechanics governing the localised fracture 
events are linear. 

Some attention has been devoted to developing models of stress transfer in 
laminates that are based on variational techniques. The normal method of 
analysis assumes a stress representation that satisfies the equations of equilibrium 
and stress boundary conditions. The representation involves functions of the 
axial coordinate which are determined by minimising the complementary energy 
of the system using variational techniques. For [0/90]s laminates, Hashin [1-4] 
and Nairn [5] have developed such solutions, while Nairn [6] has derived 
corresponding solutions for other types of cross-ply laminate. These solutions, 
when used to predict the dependence of axial Young's modulus on crack density 
lead to lower bound estimates. Nairn [7] has recently also developed a 
displacement-based variational model that leads to an upper-bound prediction for 
the axial modulus of the cracked laminate. A characteristic of stress based 
variational methods is that the corresponding displacement distribution, related 
by the stress-strain equations, is not specified. However, consistent solutions for 
both stress and displacement distributions in multiple-ply cross-ply laminates 
can be derived using analytical methods (see McCartney [8, 9]). Furthermore, 
the solution developed, automatically leads to stationary values of the Reissner 
energy functional so that a corresponding solution could have been derived by 
variational methods. The objective of this paper is to show how a recently 
developed analytical method [9] of calculating the stress and displacement 
distributions in a multiple ply cracked laminate may be used to predict the 
formation of transverse cracking as a function of biaxial loading, taking full 
account of the effects of thermal residual stresses. 

2. Representation for stress and displacement 

A set of 2N+2 plies are perfectly bonded together to form a laminate. At this 
stage each ply is regarded as being made of a different transverse isotropic 
material such that the laminate is symmetric about the mid-plane. When subject 
to biaxial loading only one half of the laminate needs to be considered. The N+l 
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plies in this half are regarded as having thicknesses hj, i = 1...N+1, where the 
suffix i is also attached to the thermoelastic constants. In the sequel E, v, u, and 
a denote respectively Young's modulus, Poisson's ratio, shear modulus, and the 
thermal expansion coefficient. The temperature difference between stress-free 
temperature of the laminate and the current temperature is denoted by AT. 

Rectangular Cartesian coordinates (x, y, z) are introduced with the origin 
lying on the centre plane of the laminate, such that x is in the through-thickness 
direction, y is in the axial direction and z is in the width direction. The 
interfaces between the plies are defined to be at x = X;, i = 1...N, with XQ = 0 and 
X

N+I = h. The 90° plies in the laminate may have cracks (but not necessarily) 
only on the planes y = ±L. The laminate is assumed to be subject to generalised 
plane strain deformation such that 

U; = u.(x, y) ,   Vj = v.(x, y) ,   w. = ec*z ,   i = 1...N+1 ,        (1) 

where ec* is a uniform transverse strain whose value is to be determined by 
demanding that the effective transverse stress applied to the laminate has a 
specified value. The assumption (1) leads to a transverse stress distribution 
oJx.,y) that is non-uniform from which the effective stress is calculated by 
averaging this stress over the laminate edge. The resulting stress distribution is 
representative of that found in laminates well away from their edges where 
transverse stress transfer effects also occur. 

The following representation for the stress and displacement field has been 
derived from the equilibrium equations, strain/displacement and stress/strain 
relations using the methods described in [9]. 

2.1 STRESS FIELD 

The fundamental assumption is that the shear stress component o^ has the 
following form, linear in the through-thickness coordinate x, for i = 1...N+1 

°Jt¥   = — 
y     hi 

Q'-KyMx, -x)+Ci
/(y)(x-x..1) (2) 

Functions Cfy), i = 1...N+1, depend only on the axial coordinate y, and are for 
the moment regarded as being arbitrary. It is to be understood that C0(y) and 
CN+i(y) are identically zero. On substituting (2) into one of the equilibrium 
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equations, it can be shown that, for i = 1...N+1 

<4(x,y) = 4^ [ (x-^Q-iCy) - (x-xi+2h)C," (y) ] + Sfr),      (3) 
2h L 

where Sj(y) is determined later, while the second equilibrium equation leads to 

<4(y) = l[CM(y) - C,(y)] + cr, ,  i = 1...N+1 (4) 

indicating that the axial stress in each ply is independent of x. The parameter C; 
denotes the uniform axial stress that would arise in the i* ply if the laminate 
were undamaged and subject to the same applied tractions and temperature. 

2.2 DISPLACEMENT FIELD 

On using (2-4) in conjunction with all but one of the stress/strain equations it 
can be shown [9], for i = 1...N+1, that the displacement components are 

Ui(x,y) = ^^[(x-x^Q^y) " Cx-x^C/'^)] 
6Et'h 

(5) 

l^^l[Ci.1(y)-Ci(y)]+(x-x.) 
h=   F 1      EA 

4rS|(y)+ei u,(y), 

where 
vl 

e; = - La. + ä|AT - vie* , (6) 
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VjCx, y) = 
x - x: 

2h 
(x - x,) Ä-1 

E'      Ml 
Q-i(y) 

_!l(x-Xi) -±(x -xi+2h.) 
Ma 

c/(y) (7) 

- (X".Xi)3[(x - x,)C# (y) - (x - Xi + 41^)0/" (y)] 
24E.'h 

- (X " Xi>2 S/(y) - (x - x.)U/(y) + V^y) ,   i = 1...N+1 . 
2E1 

In (5-7), elastic constants with a tilde are those defined in [9] for an uncracked 
laminate subject to generalised plane strain conditions. Thermoelastic constants 
having an upper case suffix relate to in-plane properties while those with a lower 
case suffix imply association with out-of-plane deformation. 

3. Interfacial and boundary conditions 

As all tractions and displacement components must be continuous in the 
laminate, 

<4 = <£ ><=< >ui=uw>vi = vw on x=X;, i = l..N. (8) 

Symmetry about x = 0 implies that 

<4 m xx, m 0    on x = 0 , (9) 

and, assuming that the outer surface of the laminate is stress free, 

<£+1 = <+1 - 0  on x = h (10) 

For any plies that are uncracked on y = ±L 
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VJCX, ±L) = ± ecL ,    oiy(x, ±L) = 0 (11) 

where ec is the effective axial strain applied to the cracked laminate. Any plies 
that are cracked on y = ±L will be stress free, i.e. 

o^(x, ±L) = 0 ,    <y(x, ±L) = 0 . (12) 

For generalised plane strain conditions and uniaxial loading conditions the 
effective transverse applied stress a, is given by 

N+l  L„   X< 

<y,  = (13) 

where cj is calculated using the transverse stress/strain relation 

<4 = v;<4 + v^o^ - EMAT + E-k* . (14) 

4. Recurrence relations 

By imposing the continuity of aM , U; and v4 at the interfaces x = Xj, i = 1...N, 
using (3), (5), (7) and (8-10) it can be shown that 

Si., = s, + £[c£ + c/']. SN+1=0, (15) 

u, = uM * -^[Q-I + 2C/'] - ^[q. - q] H. hj 
6E. E4' 

— S: + e: u0=o, 
(16) 
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v,-vM+- 
24E' 2 

Y ^ 
f                 ■   *) 

L\  A 

1 c'  - 
i A     J 

c/ 

2E. 
_S,' -h.U/ ,      i = 1...N+1 , 

(17) 

where Vt(y) is regarded as being specified for the operation of the recurrence 
relation (17), but is eliminated when developing the solution of the problem [9]. 

5. Governing differential equations 

The representation defined by (2-7) and (15-17) automatically satisfies the 
equilibrium equations and all but one of the relevant stress/strain relations in 
each ply, together with the interface and boundary conditions (8-10) for any 
functions Q(y), i = 1...N. The axial stress/strain relations are not satisfied but are 
replaced by their averages (through the thickness of each ply) as follows 

V1 
1    =1 JCcr 

K 
5L + &AAT - VA-Le'c ,    i = 1...N+1 . 

(18) 

EA' 

It is worth noting that the Reissner energy functional has a stationary value only 
when (18) is satisfied. It can be shown [9] that the unknown functions C;(y), 
i = 1...N, of the representation must then satisfy 

£ FC/'" (y) + £ G„C,*(y) + £ H^y) - 0 ,  j - 1..N, 
i-l i-l i-1 

(19) 

defining N homogeneous simultaneous differential equations. The coefficients 
Fu , Gy and Hy are constants that are readily calculated numerically. The 
equations (19) when subject to appropriate boundary conditions (specified in 
[9, 10]) derived from (11-13) may be solved using standard techniques (see [11] 
for specific details regarding their application to cracked laminates). 
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6. Thermoelastic constants of cracked laminates 

By making use of the analysis presented in sections 2-5 the effective in-plane 
thermoelastic constants may be calculated using the method described in [9,10]. 
For an effective axial stress a and effective transverse stress ct applied to a 
laminate containing n cracks per unit length, the stress/strain relations for a 
cracked multiple-ply laminate are of the form 

e(n) = -2- - ^-at + oA(n)AT , (20) 
EA(n)      EA(n)   '       AW 

e*(n) = - ^5. a + _fl_ + a» AT , (21) 
EA(n) ET(n)     ^W 

where e(n) = ec and e*(n) = ec* are respectively the effective axial and transverse 
strains of the laminate containing n cracks per unit length, and where EA(n), 
E^n), vA(n), aA(n) and Or(n) denote the effective thermoelastic constants of the 
cracked laminate. It must be emphasised that the multiple-ply stress transfer 
model described in this paper automatically leads to stress/strain relations of the 
form (20) and (21) where the coefficient of ot in (20) is identical to the 
coefficient of o in (21), i.e. the tensor for the elastic constants of a cracked 
laminate is symmetric; an essential property if a cracked laminate having non- 
uniform stress and displacement distributions is to behave as the corresponding 
effective uncracked laminate having reduced properties that take account of the 
presence of ply cracks. Most stress transfer models used in the literature, if 
extended for biaxial loading, would not lead to this symmetry. 

By applying the multiple-ply analysis to the basic problem of just two plies 
representing the 0° and 90° plies in a [0/90]s cross-ply laminate, results identical 
to those based on existing theory [8, 12, 13] have been obtained. For such 
solutions the following inter-relationships between the thermoelastic constants 
have been derived [12,13] 
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EA(n) 

EA(n) 

1 
ErCn) 

1 

"Er" 

vA _ vA(n) 

EA      EA(n)      >J EA(Q)      E, 

ET(n) 

aA(n) " «A 

(22) 

where k   = 
1 - vAvT 

,(90) - vA 
(23) 

and EA and vA are respectively the axial Young's modulus and Poisson's ratio 
of the laminate in an uncracked state. The parameter vA

(90) is the axial Poisson's 
ratio of the material in the 90° ply. More accurate stress and displacement 
solutions can, however, be obtained by representing the 0° ply by a series of 
refined layers all having the properties of the 0° ply, and similarly for the 90° 
ply. The layers used are refined near the interfacial region in order to resolve the 
stress singularity that exists at the transverse crack tips. The accurate solutions 
resulting from such an application of the analysis presented above have been 
used to establish numerically that the inter-relationships (22) are satisfied also 
by multiple-ply solutions. 

7. Prediction of transverse cracking 

The mechanics of the formation of fully developed transverse cracks in cross-ply 
laminates has been studied in some detail [12, 13] for the case when the 
laminate is modelled by just two plies, one representing the 0° ply and the other 
the 90° ply. Let y = y,a/h denote the effective fracture energy for transverse 
cracking in the laminate; h denoting the laminate half-thickness, and yt the 
fracture energy for transverse cracking in the 90° plies. The fracture energy is 
defined so that 2y would be equated to an energy release rate. Let the parameters 
a0 and c0* be the effective axial and transverse stresses that must be applied so 
that any cracks in the 0° and 90° plies of an orthogonally cracked laminate are 
just closed. It has been shown [13,14] that the criterion for the formation of p 
new cracks in unit length of laminate already having n existing cracks, is 
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2yp < j(o-oof 1 
EA(n+p)    E.(n) 

1 , *s2 
+ -(ot-o0) 

-(a-co)(o,-o:) 

E/n+p)    Ej.Cn) 

(24) 

vA(n+p)    vA(n) 

E.(n+p)    EA(n) 

It is worth noting that the result (24) is independent of the thermal expansion 
coefficients of the cracked and uncracked laminate; a property that arises from 
the introduction of the crack closure stresses c0 and a0* and the use of (22). On 
using (22) the result (24) may also be written 

4yp 1 
EA(n+p) 

1 
^ 

EA(n) 
=  [e(n+p) -e(n)]2 , (25) 

indicating that the use of an accurate stress transfer model of a cracked cross-ply 
laminate has led to an exceedingly simple result that involves only macroscopic 
properties defined at the laminate level, and which takes full account of the 
effects of biaxial loading and of the thermal residual stresses. By making use of 
(22) the relation (25) is also valid if the axial Young's modulus and strain are 
replaced by the corresponding transverse values. 

8. Discussion 

It is beyond the scope of this paper to show how the analysis described above 
can successfully solve a wide range of stress transfer problems for multiple-ply 
cross-ply laminates. The first principal result is that the stress transfer model 
predicts effective stress/strain relations (20) and (21), that are of the same form 
as those for uncracked laminates. The method of analysis leads to reliable 
predictions for the values of the thermoelastic constants appearing in (20) and 
(21). In addition it can be shown that the thermoelastic constants satisfy the 
inter-relationships (22) ensuring that at the point of crack closure the cracked 
laminate behaves in exactly the same way as an uncracked laminate. These 
relationships are required to derive the second principal result (24), or 
equivalently (25), that governs crack formation in the laminate. The transverse 
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cracking relation (24) involves the applied biaxial stresses, whereas the much 
simpler result (25) involves the axial applied strain. It is worth noting that (24) 
and (25) were first derived for a two ply model of the laminate [13] for the case 
when n = 0. 

It is emphasised that the result (24) involves only macroscopic parameters 
even though the stress transfer model was formulated at the ply level involving 
many parameters associated with the individual plies. The macroscopic 
parameters are the effective thermoelastic constants of a cracked laminate whose 
values have been calculated numerically. For a two ply model of the laminate, 
analytical expressions for the thermoelastic constants may be derived [13]. The 
stresses o0 and <y0* required to just close any cracks that are present in the 0° 
and 90° plies of the laminate are the other parameters appearing on the R.H.S. 
of (24). The physical interpretation of these parameters as crack closure stresses 
means that they too can be defined at the macroscopic level even though 
expressions for them are given (see [13], Appendix C) in terms of individual ply 
properties. The stresses a0 and o* and the corresponding strains e0 and e0* define 
the point (usually in compression) at which unloading stress-strain curves would 
converge from any stages of prior loading, and any stages of transverse crack 
formation. The inter-relationships (22) ensure that solutions have this essential 
property. The result (24) has been used [13] to investigate simultaneous cracking 
by setting n = 0, and progressive cracking by setting n = p for the case of 
regular cracking leading to uniform crack densities. By setting p = 1, for the 
case of irregular cracking arising from statistically distributed fracture energies 
at sites along the laminate length at which cracks can potentially form, 
predictions have been made [13] of the non-linear stress/strain behaviour that 
arises from transverse crack formation. Remarkably, the simple result (25) that 
is equivalent to (24) is of general validity (i.e. it applies to biaxial loading and 
takes account of thermal residual stresses) and yet, in addition to the effective 
fracture energy y, it involves only the effective axial applied strain and the axial 
Young's modulus for a cracked laminate. This relationship could, therefore, form 
the basis of an experimental technique for determining the appropriate value of 
the effective fracture energy y. 

To conclude, the analysis presented in this paper demonstrates that detailed 
and accurate micromechanical modelling at the ply level in multiple-ply 
laminates leads automatically to relatively simple modelling at the macroscopic 
laminate level. The results indicate that detailed micromechanical modelling at 
the ply level is required only to determine the dependence of the thermoelastic 
constants on transverse crack density. 
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APPENDIX: The Scientific Programme 

Session 1 
Opening of Symposium 
Z.P. Bazant: Scaling in nonlinear fracture mechanics 
B. Karihaloo: Scaling effects in the fracture of quasi-brittle materials and 
structures 

Session 2 
A.D. Karstensen, A. Nekkal & J. W. Hancock: Constraint estimation 
N.P. O'Dowd & P.J. Budden: Finite element analysis of a bimaterial 
G.X. Shan, 0. Kolednik & F.D. Fischer: Geometry and size effects in duc- 
tile fracture - FEM studies and theoretical considerations 
C.F. Shih, L. Xia & L. Cheng: Ductile/brittle fracture - modeling fracture 
process region by cell elements 

Session 3 
J.F. Knott: Effects of size-scale on fracture processes in engineering mate- 
rials 
J. W. Hutchinson: Crack growth in ductile solids from the fracture process 
V. Tvergaard: Relations between crack growth resistance and fracture pro- 
cess parameters under large scale yielding 

Session 4 
B. Cotterell, K.Y. Lam, Z. Chen & A.G. Atkins: The effect of geometry 
and size on the growth of ductile fracture 
K.P. Herrmann & T. Hauck: Interfacial cracking in thermomechanically 
loaded elastoplastic bimaterials 
S. Suresh, A.S Kim & Y. Sugimura: The effect of plasticity on the growth 
of a crack approaching an interface: theory, experiments and applications 
J. Lemaitre: Conditions of crack arrest by interfaces 

Session 5 
H. Horii, Y. Okui & J. Inoue:  Micromechanics-based continuum theory 
and thermomechanical formulation for localization phenomena 
S. Nemat-Nasser: Dynamic crack growth in inelastic solids with applica- 
tion to adiabatic shear band 
A.J. Rosakis, G. Ravichandran & M. Zhou: Dynamically growing shear 
bands in metals: high speed optical and infrared measurements of temper- 
ature and deformation fields 
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M. Ortiz & G. Gioia: The two-dimensional structure of dynamic boundary 
layers and dynamic shear bands in thermoviscoplastic solids 

Session 6 
L. Knopoff: A mesoscale model of friction and the final stress on crack 
surfaces 
R. Madariaga & A. Cochard: Dynamic friction and the origin of the com- 
plexity of earthquake sources 
D.L. Turcotte: Earthquakes, fracture, complexity 
Short "advertisements" for posters: G.E. Beltz, F.M. Borodich, M.M. Davy- 
dova, N.A. Fleck, K.-S. Kim, M.J. Korteoja, V. Mishakin, A.B. Movchan, 
N.V. Movchan, T. Sadowski, E. Visse 

Session 7 
E. Sharon, S.P. Gross & J. Fineberg: Local crack branching as a mechanism 
for instability in dynamic fracture 
J.S. Langer. Dynamic stability of fracture 
L.I. Slepyan & J.P. Dempsey: Radial crack dynamics with closure 

Session 8 
T. Siegmund &; A. Needleman: Numerical studies of fast crack growth in 
elastic-plastic solids 
J.R. Rice, J. Morrissey, Y. Ben-Zion, P.H. Geubelle & G. Perrin: Statistical 
elastodynamics of cracking through solids of heterogeneous toughness 
D. Gross: Fast crack growth in viscoplastic solids 
K.C. Hwang, T.F. Guo k Y. Huang: Near-tip fields for cracks in non- 
classical materials 
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G.E. Beltz, J.R. Rice, C.F. Shih & L. Xia: A self-consistent model for cleav- 
age in the presence of plastic flow 
F.M. Borodich: Some fractal models of fracture 
M.M. Davydova: Nonlinear kinetics of microcrack accumulation and topo- 
logical characteristics of fracture 
A.R. Akisanya & N.A. Fleck: Interfacial cracking from the free edge of a 
bimaterial strip 
A.F. Bastawros & K.-S. Kim: Laser-moire analysis of the near-tip incremental- 
plastic-deformation fields in FCC copper single crystals 
M.J. Korteoja, A. Lukkarinen, K.J. Niskanen & K. Kaski: Computational 
modelling of plastic strains in paper 
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V. Mishakin: The influence of the process of plastic deformation and dam- 
age of polycrystalline materials on the effect of acoustoelasticity 
A.B. Movchan & J.R. Willis: Nonlinear problems of modelling dislocations 
and cracks bridged by fibres 
N. V. Movchan & J.R. Willis: Fibre reinforcement effect in composites with 
factional interfaces 
T. Sadowski:  Dynamic damage modelling in semi-brittle ceramics under 
compressive impulse loading 
P. Mialon k, E. Visse: Large displacement energy release rate 
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W.A. Curtin: Non-linear damage evolution and failure in materials 
P.M. Duxbury: Mathematical modelling of the structure-sensitive proper- 

ties of materials 
P.L. Leath & N.N. Chen: The statistics of failure probability in heteroge- 
neous materials with crossover from tough to brittle behavior 
K. Kaski, M.J. Korteoja, A. Lukkarinen & T.T. Rautiainen:   Computer 
modelling of disordered plastic and viscoelastic systems 

Session 10 
O.B. Naimark:  Kinetic transitions in ensembles of defects (microcracks) 
and some nonlinear aspects of fracture 
J.-B. Leblond, M. Gologanu & J. Devaux: Void growth in ductile metals 
subjected to cyclic loadings 
L.R. Botvina: Phase transitions in fracture and crystallization processes 
Short "advertisements" for posters: 
M.J. Alava, J.P. Dempsey, S.A. Elsoufiev, J.-F. Ganghoffer, H. Gao, G. 
Lvov, Yu.K. Maksimenkov, T.T. Rautiainen, A. Roytman, A. Yuse, A. 
Zolochevsky, V.l. Erofeyev 

Session 11 
L.R.F. Rose: Nonlinear crack-bridging models 
B. Budiansky & J.C. Amazigo: Fracture-strength effects of randomly flawed 
long and short fibers in ceramic composites 

Poster Session II 
V.l. Räisänen, M.J. Alava & R.M. Nieminen: Fracture in layered fibrous 
structures 
J.P. Dempsey, R.M. Adamson & S.V. Mulmule: Scale effects on the frac- 
ture of sea ice 
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S.A. Elsoufiev. Nonlinear methods of strength computation 
J.-F. Ganghoff er &c J. Schultz: Expansion of a cavity in a rubber block un- 
der stress: application of the asymptotic expansion method to the analysis 
of the stability and bifurcation conditions 
H. Gao: Nonlinear elastic effects in dynamic fracture instabilities 
G. Lvov & E. Kostenko: Creep and brittle fracture of shells 
Yu.K. Maksimenkov & I.A. Tsurpal: Nonlinear solutions of crack theory 
problems 
T. T. Rautiainen, M. J. Alava k K. Kaski: Fracture in dissipative disordered 
systems 
S. Shishkanova, A. Roytman & F. Neves: A discrete model of estimating 
the moment of annular crack growth under bending 
A. Yuse & M. Sano: Instabilities and pattern formation in directional crack 
propagation 
A. Zolochevsky: Identification of damage variables in anisotropic materials 
with different behaviour in tension and compression 
V.l. Erofeyev:  Elastic wave propagation in a damaged medium with mi- 
crostructure 

Session 12 
A.N. Guz':  The study and analysis of non-classical problems of fracture 
and failure mechanics 
N.J.-J. Fang & J.L. Bassani: Mixed-mode creep cracking 
B.N. Cox & M.R. Begley: Creeping cracks in ceramic matrix composites 

Session 13 
S.L. Phoenix: An exact closed form solution for fragmentation of fibers in 
a single filament composite with applications to fiber reinforced ceramics 
R.M. McMeeking & M.A. McGlockton:  Numerical models for rupture of 
uniaxial composites with brittle fibers 
L.N. McCartney: Predicting non-linear behaviour in composites resulting 
from micro-cracking 
EM. Jensen: Compressive failure of fiber reinforced ceramics 
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